Что полезного можно сделать из ардуино. Что такое Arduino и что с ним можно сделать. Самый простой проект для начинающих

Arduino - это маленькое электронное устройство, состоящее из одной печатной платы, которое способно управлять разными датчиками, электродвигателями, освещением, передавать и принимать данные… Arduino - это целое семейство устройств разных размеров и возможностей. А также это целый зоопарк клонов Ардуино и мир ардуино-совместимых устройств. Но давайте обо всём по порядку.

1 «Мозг» Arduino

«Мозг» Arduino - это микроконтроллер семейства Atmega . Микроконтроллер представляет из себя микропроцессор с памятью и различными периферийными устройствами, реализованный на одной микросхеме. Фактически это однокристальный микрокомпьютер, который способен выполнять относительно простые задачи. Разные модели из семейства Arduino оснащены разными микроконтроллерами.

Atmega328 - мозг Arduino UNO

На фото микроконтроллер Atmega328 . Такие микроконтроллеры стоят на Arduino UNO и Arduino Nano (но в другом корпусе).

2 «Руки» Arduino

Но какой толк от мозга, если он не имеет рук? Руками в данном случае служат электрические выводы , размещённые по периметру платы Arduino. Есть платы с большим количеством выводов, есть с меньшим. Например, самая большая плата в семействе Ардуино - Arduino Mega - имеет более 70 независимых выводов, а самая маленькая - Arduino Pro Mini - всего 22 вывода.


На фотографии показаны в сравнении Arduino Mega и Arduino Pro Mini. Представляете, что мог бы делать человек, имея столько рук, сколько Arduino Mega - выводов?

3 Цифровые и аналоговые выводы

Не все выводы у Arduino одинаковые. Есть выводы цифровые , а есть аналоговые . Принципиальная разница между ними в том, что на цифровых выводах может быть только два значения: либо логическая "1" (TRUE, от 3 до 5 вольт), либо логический "0" (FALSE, от 0 до 1,5 вольт), а на аналоговых выводах диапазон от логической "1" до "0" поделён на множество мелких участков.

Зачем это нужно? Давайте рассмотрим такой наглядный пример. Если подключить к цифровому выводу Arduino светодиод и подать на вывод логическую "1", то светодиод загорится с максимальной яркостью; если подать "0" - светодиод погаснет. Никаких промежуточных вариантов нет. Если светодиод подключить к аналоговому выводу, то яркостью светодиода можно управлять плавно. На практике к аналоговым выводам чаще всего подключаются какие-либо аналоговые датчики.

4 Чем может управлять Arduino

В итоге такое количество «рук» у Arduino позволяет подключать к нему огромное количество различных периферийных устройств. Среди них, например:

  • кнопки, герконы и джойстики,
  • светодиоды и фотодиоды,
  • микрофоны и динамики,
  • электродвигатели и сервоприводы,
  • ЖК дисплеи,
  • считыватели радиометок (RFID и NFC),
  • bluetooth, WiFi и Ethernet модули,
  • считыватели SD карт,
  • радиоприёмники и радиопередатчики,
  • GPS и GSM модули…

А также десятки различных датчиков:

  • освещённости,
  • магнитного поля,
  • ультразвуковые и лазерные дальномеры,
  • гироскопы и акселерометры,
  • датчики дыма и состава воздуха,
  • датчики давления, температуры и влажности…

И ещё многое, многое другое

Всё это превращает Arduino в универсальное ядро системы, которое может быть сконфигурировано совершенно разнообразными способами. Хотите сделать радиоуправляемую кормушку для питомца? Пожалуйста! Хотите чтобы при начале дождя у вас на лоджии закрывалось окно? Пожалуйста! Хотите управлять яркостью освещения в комнате со смартфона? Запросто! Хотите получать уведомления на e-mail, если почва комнатных растений стала слишком сухой? И это можно!


На фотографии показана лишь крохотная часть периферийных устройств, которые можно подключить к Arduino. На самом деле их гораздо, гораздо больше.

5 Общение с Arduino

Как же процессор узнаёт, что именно ему следует делать? Вы должны рассказать ему это. Написание сообщений для Arduino называется программирование . Существует язык для общения с микроконтроллером, упрощённый и адаптированный специально для Arduino. Освоить этот язык совсем не сложно при желании и определённой настойчивости, даже если вы никогда раньше не программировали.

И для упрощения этого процесса разработана специальная программная среда - Arduino IDE . В её состав включены десятки примеров хороших, работающих программ. Изучив их, вы очень быстро многое узнаете о языке общения с Arduino.

Arduino позволит вашим программам выйти из виртуального мира в мир реальный. Вы сможете увидеть, как написанные вами программы заставляют мигать светодиод или вращать вал двигателя, а затем делать и более сложные и полезные вещи. Arduino позволит вам узнать много нового и интересного и в электронике, и в программировании. В итоге это может послужить вам отличным хобби, увлекательным занятием с детьми, замечательным и полезным времяпровождением.

Вы можете заказать Arduino и множество разнообразных датчиков для него в китайском онлайн-магазине Али-Экспресс . Здесь цены ниже, но доставка занимает время от 3 недель до 1,5 месяцев. Можно заказать Arduino в магазине электроники Voltiq.ru . Здесь цены чуть выше, чем в китайских интернет-магазинах, но не придётся ждать целый месяц. Ещё один хороший магазин электроники и робототехники - FastNVR.ru .

Ну и напоследок, посмотрите, какие разные и замечательные проекты можно воплотить с помощью Ардуино!

Arduino – аппаратная вычислительная платформа, которая используется для проектирования и создания электронных устройств различного уровня сложности.

В основе этого электронного конструктора лежит аппаратная платформа для ввода и вывода, которая программируется на языке Processing/Wiring , созданном на базе C++. Из каких компонентов состоит Arduino, что можно сделать с его помощью и как научиться обращаться с этим умным чипом?

Arduino – один из наиболее распространенных миниатюрных контроллеров с набором входов и выходов, который работает по предварительно написанной программе. Этот универсальный контроллер очень удобен для создания прототипов электронных устройств, что делает его популярным не только среди студентов и любителей со всего мира, но и среди продвинутых проектировщиков и изобретателей.

Arduino подкупает своей универсальностью. Используя специальные расширяющие платы, этот контроллер может взаимодействовать с другими девайсами посредством Bluetooth, Wi-Fi, GPRS, осуществлять и принимать телефонные звонки и СМС.

Контроллер является не простой микросхемой, а платой, где реализована готовая схема питания и интерфейсы для присоединения к ПК, входные и выходные разъемы.

Благодаря широкому ассортименту библиотек протоколов, имеется возможность организовать взаимодействие Arduino с сенсорами и сервоприводами, используемыми в современной робототехнике.

А открытая архитектура дает возможность настраивать Arduino под любые цели. А благодаря упрощенному языку программирования, освоить работу с контроллером будет легко даже новичкам. Особенно удобно работать с Ардуино благодаря платформе, которая дает практически мгновенный отклик на запрограммированные команды.

Что можно сделать с Arduino? Мы добавляем уроки по созданию устройств на основе этой платы в нашем разделе Уроки Ардуино . Практически любую оригинальную идею программист, дизайнер или инженер может превратить в рабочий прототип – достаточно лишь приобрести контроллер и дополнительные радиодетали. Также энтузиастов программирования и схемотехники подкупает невысокая стоимость Arduino, которая делает контроллер доступным для широких масс.

Проекты на Arduino: что можно сделать

Рассмотрим несколько оригинальных идей, которые можно реализовать на Arduino. Помимо самой схемы, вам могут понадобиться дополнительные детали, которые выгоднее всего закупать на AliExpress.

Регулятор температуры в доме

Реализовать такой проект можно с использованием нескольких плат Arduino Nano и одной Arduino Uno или Mega, которая будет выступать в роли базы. Связь между модулями можно реализовать с помощью NRF24L01 – модуля радиосвязи, который дает возможность объединять до 6 плат.

В одном корпусе необходимо собрать Arduino Nano, соединенные с датчиками влажности и температуры , а также модулем NRF24L01 . Источником питания может выступать обычная батарейка. Несколько таких устройств необходимо разместить по всем помещениям в доме.

Показатели с будут передаваться на базу, в роли которой выступает Arduino Mega или Uno. К ней также необходимо присоединить приемник сигнала NRF24L01, источник питания и дисплей LCD для отображения текстовой информации. Располагать «базу» необходимо в непосредственной близости от системы отопления. Принимая и обрабатывая поступающие данные о влажности и температуре, база будет передавать системе отопления команды и повышении или понижении температуры.

ЧПУ-станок

Эта идея является одной из самых сложных в реализации. С помощью Arduino Mega вы сможете реализовать не только ЧПУ-станок, но и 3D принтер. Помимо самой платы, вам необходимы будут драйверы двигателей L298N , а также сами двигатели. Остальная часть работы – это рама и разработка программного кода.

Smart-теплица

Все владельцы огорода или приусадебного участка знают, как много внимания требует к себе теплица и выращиваемая в ней рассада. Необходимо постоянно контролировать влажность почвы, вовремя открывать и закрывать двери и т. д. С помощью Arduino все эти рутинные процессы могут быть автоматизированы.

Используя всего одну плату Arduino Mega и контроллер , вы сможете фиксировать и выводить на экран информацию о температуре в теплице, а также передавать команды на запуск полива, управление моторами для открытия и закрытия дверей.

Роботы

Роботы – лучшая игрушка не только для детей, но и для взрослых, особенно, когда имеется возможность ими управлять. Используя Arduino и различные подручные материалы, вы сможете сделать робота в любой конфигурации: от наиболее примитивных до сложных моделей.

Например, с помощью ультразвукового ваш робот сможет фиксировать расстояние до препятствий и огибать их при движении. Применив драйвер двигателей L293D , вы получите в свое распоряжение 3 сервопривода и 4 двигателя. С помощью модуля HC-06 у вас появится возможность управлять своим детищем по Bluetooth через смартфон.

Конечно, на этом список проектов на Arduino, что можно сделать своими руками, не исчерпывается – возможности здесь ограничены только вашей фантазией и навыками.

В этой статье я решал собрать полное пошаговое руководство для начинающих Arduino. Мы разберем что такое ардуино, что нужно для начала изучения, где скачать и как установить и настроить среду программирования, как устроен и как пользоваться языком программирования и многое другое, что необходимо для создания полноценных сложных устройств на базе семейства этих микроконтроллеров.

Тут я постараюсь дать сжатый минимум для того, что бы вы понимали принципы работы с Arduino. Для более полного погружения в мир программируемых микроконтроллеров обратите внимание на другие разделы и статьи этого сайта. Я буду оставлять ссылки на другие материалы этого сайта для более подробного изучения некоторых аспектов.

Что такое Arduino и для чего оно нужно?

Arduino — это электронный конструктор, который позволяет любому человеку создавать разнообразные электро-механические устройства. Ардуино состоит из программной и аппаратной части. Программная часть включает в себя среду разработки (программа для написания и отладки прошивок), множество готовых и удобных библиотек, упрощенный язык программирования. Аппаратная часть включает в себя большую линейку микроконтроллеров и готовых модулей для них. Благодаря этому, работать с Arduino очень просто!

С помощью ардуино можно обучаться программированию, электротехнике и механике. Но это не просто обучающий конструктор. На его основе вы сможете сделать действительно полезные устройства.
Начиная с простых мигалок, метеостанций, систем автоматизации и заканчивая системой умного дома, ЧПУ станками и беспилотными летательными аппаратами. Возможности не ограничиваются даже вашей фантазией, потому что есть огромное количество инструкций и идей для реализации.

Стартовый набор Arduino

Для того что бы начать изучать Arduino необходимо обзавестись самой платой микроконтроллера и дополнительными деталями. Лучше всего приобрести стартовый набор Ардуино, но можно и самостоятельно подобрать все необходимое. Я советую выбрать набор, потому что это проще и зачастую дешевле. Вот ссылки на лучшие наборы и на отдельные детали, которые обязательно пригодятся вам для изучения:

Базовый набор ардуино для начинающих: Купить
Большой набор для обучения и первых проектов: Купить
Набор дополнительных датчиков и модулей: Купить
Ардуино Уно самая базовая и удобная модель из линейки: Купить
Беспаечная макетная плата для удобного обучения и прототипирования: Купить
Набор проводов с удобными коннекторами: Купить
Комплект светодиодов: Купить
Комплект резисторов: Купить
Кнопки: Купить
Потенциометры: Купить

Среда разработки Arduino IDE

Для написания, отладки и загрузки прошивок необходимо скачать и установить Arduino IDE. Это очень простая и удобная программа. На моем сайте я уже описывал процесс загрузки, установки и настройки среды разработки. Поэтому здесь я просто оставлю ссылки на последнюю версию программы и на

Версия Windows Mac OS X Linux
1.8.2

Язык программирования Ардуино

Когда у вас есть на руках плата микроконтроллера и на компьютере установлена среда разработки, вы можете приступать к написанию своих первых скетчей (прошивок). Для этого необходимо ознакомиться с языком программирования.

Для программирования Arduino используется упрощенная версия языка C++ с предопределенными функциями. Как и в других Cи-подобных языках программирования есть ряд правил написания кода. Вот самые базовые из них:

  • После каждой инструкции необходимо ставить знак точки с запятой (;)
  • Перед объявлением функции необходимо указать тип данных, возвращаемый функцией или void если функция не возвращает значение.
  • Так же необходимо указывать тип данных перед объявлением переменной.
  • Комментарии обозначаются: // Строчный и /* блочный */

Подробнее о типах данных, функциях, переменных, операторах и языковых конструкциях вы можете узнать на странице по Вам не нужно заучивать и запоминать всю эту информацию. Вы всегда можете зайти в справочник и посмотреть синтаксис той или иной функции.

Все прошивки для Arduino должны содержать минимум 2 функции. Это setup() и loop().

Функция setup

Для того что бы все работало, нам надо написать скетч. Давайте сделаем так, что бы светодиод загорался после нажатия на кнопку, а после следующего нажатия гас. Вот наш первый скетч:

// переменные с пинами подключенных устройств int switchPin = 8; int ledPin = 11; // переменные для хранения состояния кнопки и светодиода boolean lastButton = LOW; boolean currentButton = LOW; boolean ledOn = false; void setup() { pinMode(switchPin, INPUT); pinMode(ledPin, OUTPUT); } // функция для подавления дребезга boolean debounse(boolean last) { boolean current = digitalRead(switchPin); if(last != current) { delay(5); current = digitalRead(switchPin); } return current; } void loop() { currentButton = debounse(lastButton); if(lastButton == LOW && currentButton == HIGH) { ledOn = !ledOn; } lastButton = currentButton; digitalWrite(ledPin, ledOn); }

// переменные с пинами подключенных устройств

int switchPin = 8 ;

int ledPin = 11 ;

// переменные для хранения состояния кнопки и светодиода

boolean lastButton = LOW ;

boolean currentButton = LOW ;

boolean ledOn = false ;

void setup () {

pinMode (switchPin , INPUT ) ;

pinMode (ledPin , OUTPUT ) ;

// функция для подавления дребезга

boolean debounse (boolean last ) {

boolean current = digitalRead (switchPin ) ;

if (last != current ) {

delay (5 ) ;

current = digitalRead (switchPin ) ;

return current ;

void loop () {

currentButton = debounse (lastButton ) ;

if (lastButton == LOW && currentButton == HIGH ) {

ledOn = ! ledOn ;

lastButton = currentButton ;

digitalWrite (ledPin , ledOn ) ;

В этом скетче я создал дополнительную функцию debounse для подавления дребезга контактов. О дребезге контактов есть на моем сайте. Обязательно ознакомьтесь с этим материалом.

ШИМ Arduino

Широтно-импульсная модуляция (ШИМ) — это процесс управления напряжением за счет скважности сигнала. То есть используя ШИМ мы можем плавно управлять нагрузкой. Например можно плавно изменять яркость светодиода, но это изменение яркости получается не за счет уменьшения напряжения, а за счет увеличения интервалов низкого сигнала. Принцип действия ШИМ показан на этой схеме:

Когда мы подаем ШИМ на светодиод, то он начинает быстро зажигаться и гаснуть. Человеческий глаз не способен увидеть это, так как частота слишком высока. Но при съемке на видео вы скорее всего увидите моменты когда светодиод не горит. Это случится при условии что частота кадров камеры не будет кратна частоте ШИМ.

В Arduino есть встроенный широтно-импульсный модулятор. Использовать ШИМ можно только на тех пинах, которые поддерживаются микроконтроллером. Например Arduino Uno и Nano имеют по 6 ШИМ выводов: это пины D3, D5, D6, D9, D10 и D11. В других платах пины могут отличаться. Вы можете найти описание интересующей вас платы в

Для использования ШИМ в Arduino есть функция Она принимает в качестве аргументов номер пина и значение ШИМ от 0 до 255. 0 — это 0% заполнения высоким сигналом, а 255 это 100%. Давайте для примера напишем простой скетч. Сделаем так, что бы светодиод плавно загорался, ждал одну секунду и так же плавно угасал и так до бесконечности. Вот пример использования этой функции:

// Светодиод подключен к 11 пину int ledPin = 11; void setup() { pinMode(ledPin, OUTPUT); } void loop() { for (int i = 0; i < 255; i++) { analogWrite(ledPin, i); delay(5); } delay(1000); for (int i = 255; i > 0; i--) { analogWrite(ledPin, i); delay(5); } }

// Светодиод подключен к 11 пину

int ledPin = 11 ;

void setup () {

pinMode (ledPin , OUTPUT ) ;

void loop () {

for (int i = 0 ; i < 255 ; i ++ ) {

analogWrite (ledPin , i ) ;

delay (5 ) ;

delay (1000 ) ;

for (int i = 255 ; i > 0 ; i -- ) {

Что такое цифровая драм-машина или иначе бит-машина слышали наверное все. Совсем другое дело электромеханическая драм-машина, созданая норвежским композитором Koka Nikoladze. В ней звук формируется за счет механического воздействия. Машинка работает под управлением Arduino, который позволяет запрограммировать мелодию для исполнения.

Вы слышали про Arduino и вам хочется поскорее разобраться с ней, чтобы сделать свое устройство, робота или что там еще придумали. Помигать светодиодом вы сможете уже в первый вечер, но на создание более сложного гаджета уйдет куда больше времени. Впереди долгие недели и даже месяцы изучения программирования на C, поиск совместимых библиотек и модулей, костылей и превозмогания трудностей. Как ускорить процесс? Начните с Arduino совместимой платы, которую можно программировать на JavaScript.

Оригинал статьи на английском http://www.bunniestudios.com/blog/?p=2407

На фотографии готовые печатные платы для Leonardo

Самое интересное в лампе - это то, что она реагирует на приближение с помощью самодельного, и вообщем-то очень простого емкостного сенсора. Основной элемент, которого - лист фольги. На данный момент эта сборка лишь прототип, и все электронные компоненты и сенсор (тот самый лист фольги) никаким образом не интегрированы в сам светильник, но сама идея очень интересная.

Arduino, самодельная перчатка с 5-тью зашитыми датчиками изгиба, 5 сервоприводов HITEC HS-81 и механическая рука. Как все это работает можно посмотреть на видео. Arduino cчитывает данные с датчиков изгиба и управляет сервомоторчиками так, чтобы механическая рука повторяла движения кисти человека. Кстати, в первом видео автор использует готовый набор механики руки, который можно купить на ebay, правда без электронных компонентов и приводов. В другом проекте автор сделал подобную руку из подручных материалов.

В этом проекте автор покажет, как можно подключить полноцветную светодиодную матрицу 8x8 к Arduino. Сама матрица имеет 32 входа: 8 анодов, 8 катодов красного цвета, 8 зеленого и 8 синего. При этом для управления матрицей будут задействованы всего 3 выхода на Arduino. Никакой магии тут нет, а есть 4 сдвиговых регистра 74HC595.

Более подробно об использовании 74HC59 с Arduino можно почитать в инструкции Использование сдвигового регистра 74HC595 для увеличения количества выходов .

Один регистр дает нам 8 выходов, так как у нашей матрицы 32 входа, в проекте использована техника каскадирования сдвиговых регистров. Нам понадобится 4 регистра 74HC59, при этом количество подключений к Arduino не изменится и будут задействованы 3 выхода на Arduino. для управления. Питание осуществляется по USB, но можно подключить и автономное.

Съемка быстротекущих процессов, таких как падение капли, взрыв воздушного шарика, - очень непростое дело. Точно подгадать момент, когда нужно нажать на спуск затвора, без специальных устройств практически невозможно. Нет, можно, конечно, сделать сотню попыток, и в какой-то момент удача повернется к тебе. Но можно обойтись и без сотни шариков. Тут на помощь придет Arduino. Ниже описан процесс конструирования автоматического триггера на базе Arduino с реакцией на звук или пересечение луча лазерной указки.

Cтрого говоря, Arduino будет управлять не затвором камеры, а фотовспышкой. К сожалению, задержка реакции камеры на сигнал — в районе 20 миллисекунд, что для человеческого глаза не заметно, но все же дольше, чем можно себе позволить при съемке лопнувшего шарика. Поэтому съемка производится в темной комнате с выдержкой 10 секунд, а вот вспышка срабатывает именно в нужный момент. Так как в комнате практически нет освещения, то всё экспонирование фотографии произойдет именно в момент работы вспышки (около 1 миллисекунды).

Arduino. Всем известный и полюбившейся многим девайс стал на столько популярен, что даже маленькие дети не успев родится уже пытаются написать скетч. Зы, вот это стеб... Короче и я не хочу отставать и в данной статье расскажу как превратить плату расширения ATmega8A в arduino. Кто не знает что эта за плата, могут почитать . Да, я понимаю, многие скажут, а где тут самодельность. А самодельность заключается в том, что для Arduino нужно всего несколько вещей. Первое - микроконтроллер. Для дешивизны пойдет ATmega8. Второе - кварц на 16МГц. Третье - два керамических кондера на 22пф. И четвертое - преобразователь USB TTL, любой. Для сборки нужно присоединить кварц к ножкам МК XTAL1 и XTAL2. К этим же ножка прицепить два кондера, а другие ножки кондерев на землю и все.

А теперь переходим к практическим действиям. Превращать в Arduino будем отладочную плату, но все действия спроведливы для простого МК, кварца и пары кондеров. И так, поехали.
На плате расширения по умолчанию установлен кварц на 7,3728МГц. Для Arduino это не пойдет. Значит берем и меняем его на 16МГц.

Далее нам понадобится залить загрузчик в нашу плату. Для этого берем любую плату Arduino. У меня под рукой Arduino UNO. Если у вас еще нет Arduino, то пора ее преобретси. Купить ее можно в магазине Чип Резистор . И так, Arduino UNO у нас есть. кладем перед собой справа на столе Arduino UNO, а слева плату расширения ATmega8A. С правой стороны у этих плат есть разъем ISP с классической Атмеловской распиновкой.

Смело берем проводки и соеденяем эти разъемы один к одному за исключением 5 пина.


Теперь берем проводок и одним концом вставляем в 5-й пин на плате расширения ATmega8A, а второй конец на вывод Arduino UNO Digital 10. Должно получится вот так.

В итоге после всех манипуляций, у нас должен быть вот такой вид.

Если все отлично, то подключаемся к USB компьютера. При правильном подключении должны загорется светодиоды на Arduino UNO и красный светодиод на плате расширения ATmega8A. (К сожелению на фото провода загородили светодиод, но поверьте он горит)

Переходим к программным процедурам. А вот тут всех любителей МК ATmega8 ждет большая подстава от производителей Arduino. На текущий момент версия IDE 1.6.3 не поддерживает эти МК. Точнее конфигурационные файлы и загрузчик есть, но залить его нельзя. Дело в том что Arduino перешли на минимальный МК ATmega328P, а эта зараза имеет Extended Byte Fuse. А порстая восьмерка нет. Из-за этой дряни загрузчик не заливается, а ругается на отсутствия этих битов. Поэтому нужно загрузчик заливать старой версией IDE. У кого ее нет, можете скачать у меня . Это версия 1.0.3 и ее не надо устанавливать. Просто разархивируйте куда-нибудь и все. Далее просто запустите программу из этой папки. А теперь давайте настроим программу для заливки нашего МК. Для начала выбераем из примеров программатор ArduinoISP и заливаем его в Arduino UNO или какую вы сейчас используете.

После заливки, нужно заменить плату Arduino UNO или какая у вас на Arduino NG or older w/ATmega8 .

Все. Можно заливать. Нажимаем Сервис -> Записать загрузчик и ждем окончания записи.

Готово. Arduino родилась. Отключаем все провода, а плату расширения вешаем на отладочную плату GSMBOARD 1.1. Далее берем плату расширения USB-TTL и соединяем проводами GND - GND, RXD - TXD, TXD - RXD и подаем питание. Должен загореться зеленый светодиод.

Если все заработало, выключаем старую прогу и запускаем самцю последнюю версию. На сегодня это 1.6.3 и пишем вот такой код. void setup() { pinMode(2, OUTPUT); } void loop() { digitalWrite(2, HIGH); delay(2000); digitalWrite(2, LOW); while(1); } Собственно что тут происходит. Сначала инициализируем пин 2 на выход. Затем выводим на него единицу, ждем две секунды и прижимаем к нулю. Затем вваливаемся в бесконечный цикл. Дабы было понятно, вот картинка во что превратилась отладочная плата.

Как видно второй пин как раз отвечает за включение и выключение модуля. Теперь самое время залить наш скетч в свежеиспеченную Arduino. Для этого перенастроим IDE выбрав пункты как на картинке ниже. И не забудьте поменять порт на USB-TTL.

Все настроили. Жмем залить скетч. Все бы хорошо да ошибка вылезла. Эх. Вот тут что за грабля заволялась. На Arduino используется виртуальный COM порт для загрузки программ. Работает это так. Сначала IDE компилит проект, затем дергает ножку ресета МК, а так как сначала запускается загрузчик, то IDE увидев его начинает лить программу во флеш. А если после компиляции не дернуть ресет МК, то IDE загрузчика не дождется и вывалит ошибку. Для дерганья ресета на всех Arduino заведена ножка COM порта DTR. На плате расширения USB-TTL этой ноги нет, поэтому когда IDE скомпилит проект и напишет Вгружаем .

Судорожно нажимаем и отпускаем кнопку сброса на плате расширения ATmega8A. IDE подцепит загрузчик и зальет программу во флеш. Все, прога потупит немного и включит GSM модуль. Если все сделали правильно, то должно быть как на картинке.

Для счастливых обладателей переходников USB-RS232 можно вывести ножку DTR из порта (естественно через микросхему MAX3232) на ресет МК. Это пин 5 на разъеме ISP через конденсатор 100нф. То есть DTR - конденсатор - RES. И тогда IDE будет сама дергать ресет. В любом случае должна получится вот такая картина. Программа отработала и включила модуль.

Теперь можно ковыряться с GSM модулем. Если возникнут вопросы, пишите. Попробуем разобраться. 

АНОНИМ 02.02.16 22:32

Спасибо за статью. Теперь в своей ардуино уно я могу использовать и мегу 8.

niko19 25.12.16 23:03

Нахрена проделывать все это с платой расширения и получить Ардуину, если на столе уже готовая Ардуина лежит? Вопрос стоит, как сделать самодельную Ардуину, скажем так на макетной плате, из завалявшейся Мега8 и кварца.Что нужно залить в Мегу, буквально по пунктам, а еще лучше готовый файл прошивки, У меня например имеется параллельный программатор, впрочем и последовательный тоже есть, а готовой Ардуины нет...

Алексей 25.12.16 23:40

Ардуино это микроконтроллер фирмы атмел с залитым загрузчиком для работы с IDE от ардуины. Все что нужно так это выстовить фьюзы для загрузчика, из папки прошивок выбрать для своего мк и залить его. Если в краце.