Первичные измерительные преобразователи. Генераторные измерительные преобразователи Параметрические измерительные преобразователи

Измерительные преобразователи неэлектрических величин делятся на параметрические и генераторные. В параметрических преобразователях выходной величиной является приращение параметра электрической цепи (R, L, М, С ), поэтому при их использовании необходим дополнительный источник питания.

В генераторных преобразователях выходной величиной являются ЭДС, ток или заряд которых функционально связанные с измеряемой неэлектрической величиной.

При создании измерительных преобразователей неэлектрических величин стремятся получить линейную функцию преобразования. Отличие реальной градуировочной характеристики от номинальной линейной функции преобразования обусловливает погрешность нелинейности, являющуюся одной из главных составляющих результирующей погрешности при измерениях неэлектрических величин. Одним из способов снижения погрешности нелинейности является выбор в качестве входных и выходных величин преобразователя таких величин, взаимосвязь которых ближе к линейной функции. Так, например, при измерении линейных перемещений с помощью емкостного преобразователя может изменяться либо зазор между пластинами, либо площадь их перекрытия. При этом функции преобразования оказываются различными. При изменении зазора зависимость емкости от перемещения подвижной пластины существенно нелинейная, она описывается гиперболической функцией. Однако, если в качестве выходной величины преобразователя использовать не его емкость, а сопротивление на некоторой частоте, то измеряемое перемещение и указанное емкостное сопротивление оказываются связанными линейной зависимостью.

Другим эффективным способом уменьшения погрешности нелинейности параметрических измерительных преобразователей является их дифференциальное построение. Любой дифференциальный измерительный преобразователь фактически представляет собой два аналогичных измерительных преобразователя, выходные величины которых вычитаются, а входная величина воздействует на эти преобразователи противоположным образом.

Структурная схема прибора с дифференциальным измерительным преобразователем приведена на рисунке 16.1.

Измеряемая величина х воздействует на два аналогичных измерительных преобразователя ИП1 и ИП2 , причем соответствующие приращения значений выходных величин у 1 и у 2 имеют противоположные знаки. Кроме того, есть некоторое постоянное начальное значение x 0 величины

на входах этих преобразователей, определяемое обычно конструктивными параметрами преобразователей. Выходные величины у 1 и у 2 вычитаются, а их разность у 3 измеряется электроизмерительным устройством ЭИУ (аналоговым или цифровым).

Предположим, что преобразователи ИП1 и ИП2 идентичны, а их функции преобразования достаточно точно описываются алгебраическим полиномом второго порядка. В этом случае значения у 1 и у 2 на выходах преобразователей можно записать виде (16.1) /14/

После вычитания получим (16.2) /14/

Рисунок 16.1 - Структурная схема диф- Рисунок 16.2 - Реостатные из- ференциального измерительного пре- мерительные преобразователи

образователя

Отсюда видно, что результирующая функция преобразования y 3 = f(х) оказалась линейной. Так как у 3 не зависит от а 0 , то происходит компенсация систематических аддитивных погрешностей измерительных преобразователей. Кроме того, по сравнению с одним преобразователем практически вдвое возрастает чувствительность. Все это определяет широкое применение дифференциальных измерительных преобразователей в практике.

Рассмотрим кратко основные типы используемых параметрических преобразователей неэлектрических величин.

Министерство образования Республики Беларусь

Учреждение образования

"Белорусский государственный университет

информатики и радиоэлектроники"

Кафедра метрологии и стандартизации

Параметрические измерительные преобразователи

Методические указания к лабораторной работе Э.5Б

для студентов специальности 54 01 01 ‑ 02

"Метрология, стандартизация и сертификация"

всех форм обучения

УДК 621.317.7 + 006.91 (075.8)

ББК 30.10я73

Составители В.Т. Ревин, Л.Е. Батай

Методические указания содержат цель работы, краткие сведения из теории, описание лабораторной установки, лабораторное задание и порядок выполнения работы, а также указания по оформлению отчета и контрольные вопросы для проверки знаний студентов. Рассмотрены основные виды параметрических измерительных преобразователей (реостатные, индуктивные и емкостные), их основные характеристики и схемы включения в измерительную цепь. Выполнение лабораторной работы предполагает определение основных метрологических характеристик (функция преобразования, чувствительность, основная погрешность, погрешность определения чувствительности) рассмотренных измерительных преобразователей, а также овладение методикой измерения неэлектрических величин с помощью измерительных преобразователей и нахождения погрешностей определения значений неэлектрических величин.

УДК 621.317.7 + 006.91 (075.8)

ББК 30.10 я 73

1 Цель работы

1.1 Изучение принципа действия, конструкции и основных характеристик реостатных, емкостных и индуктивных измерительных преобразователей неэлектрических величин в электрические.

1.2 Изучение методов измерения неэлектрических величин с помощью реостатных, емкостных и индуктивных измерительных преобразователей.

1.3 Практическое определение основных характеристик измерительных преобразователей и измерение с их помощью линейных и угловых перемещений.

2 Краткие сведения из теории

Особенностью современных измерений является необходимость определения значений множества физических величин, среди которых большую часть составляют неэлектрические величины. Для измерения неэлектрических величин широко используются электрические средства измерений, что обусловлено рядом их существенных достоинств. К ним относятся высокая точность измерения, высокие чувствительность и быстродействие средств измерений, возможность проведения дистанционных измерений, автоматического преобразования измерительной информации, автоматического управления процессом измерения и т.п. Особенностью электрических средств измерений, предназначенных для измерения неэлектрических величин, является обязательное наличие первичного измерительного преобразователя неэлектрической величины в электрическую.

Первичный измерительный преобразователь устанавливает однозначную функциональную связь между выходной электрической величиной Y и входной неэлектрической величиной Х: Y = f ( X ).

В зависимости от вида выходного сигнала первичные измерительные преобразователи подразделяются на параметрические и генераторные.

В параметрических измерительных преобразователях выходной величиной является параметр электрической цепи: сопротивление R, индуктивность L, взаимная индуктивность M или емкость C. При использовании параметрических измерительных преобразователей всегда необходим дополнительный источник питания, энергия которого используется для образования выходного сигнала преобразователя.

В генераторных измерительных преобразователях выходными величинами являются ЭДС, ток, напряжение, или заряд. При использовании генераторных измерительных преобразователей вспомогательные источники питания применяются только для усиления полученного сигнала.

По принципу действия параметрические измерительные преобразователи подразделяются на реостатные, тензочувствительные (тензорезисторы), термочувствительные (терморезисторы, термисторы), емкостные, индуктивные, ионизационные.

Зависимость выходной величины измерительного преобразователя Y от входной величины X, описываемая выражением Y = f (X ), называется функцией преобразования. Часто выходная величина преобразователя Y зависит не только от входной измеряемой величины X , но и от некоторого внешнего фактора Z . Поэтому в общем виде функцию преобразования можно представить функциональной зависимостью: Y = f (X , Z ).

При разработке измерительных преобразователей неэлектрических величин стремятся получить линейную функцию преобразования. Для описания линейной функции преобразования достаточно задать два параметра: начальное значение выходной величины Y 0 (нулевой уровень), соответствующее нулевому или иному начальному значению входной величины X, и параметр S, характеризующий наклон функции преобразования.

В этом случае функция преобразования может быть представлена в следующем виде:

Параметр S, характеризующий наклон функции преобразования, называется чувствительностью преобразователя. Чувствительность преобразователя  это отношение изменения выходной величины измерительного преобразователя ΔY к вызвавшему его изменению входной величины ΔX:

. (2)

Чувствительность преобразователя является величиной, имеющей размерность, причем размерность зависит от природы входной и выходной величин. Для реостатного преобразователя, например, чувствительность имеет размерность Ом/мм, для термоэлектрического преобразователя  мВ/К, для фотоэлемента  мкА/лм, для двигателя  об/(сВ) или Гц/В, для гальванометра  мм/мкА и т. д.

Важнейшей проблемой при проектировании и использовании измерительного преобразователя является обеспечение постоянства его чувствительности. Чувствительность должна как можно меньше зависеть от значений входной величины Х (в этом случае функция преобразования линейна), скорости изменения X, времени работы преобразователя, а также воздействия других физических величин, характеризующих не сам объект, а его окружение (такие величины называются влияющими). При нелинейной функции преобразования чувствительность зависит от значений входной величины: S = S (X ) .

Диапазон значений неэлектрических величин, преобразуемых с помощью измерительного преобразователя, ограничивается с одной стороны пределом преобразования, а с другой – порогом чувствительности.

Предел преобразования преобразователя – это максимальное значение входной величины, которое может быть воспринято преобразователем без его повреждения или искажения функции преобразования.

Порог чувствительности – это минимальное изменение значения входной величины, способное вызвать заметное изменение выходной величины преобразователя.

Соотношение Y = f (X) выражает в общей теоретической форме физические законы, положенные в основу работы преобразователей. На практике функция преобразования определяется экспериментально в численной форме в результате градуировки преобразователя. В этом случае для ряда точно известных значений X измеряют соответствующие значения Y, что позволяет построить градуировочную кривую (рисунок 1,а ). Используя построенную градуировочную кривую, по полученным в результате измерения значениям электрической величины Y можно найти соответствующие значения искомой неэлектрической величины X (рисунок 1,б ).

а – построение градуировочной кривой по измеренным значениям величин Х и Y;

б  использование градуировочной кривой для определения входной величины Х

Рисунок 1  Градуировочная характеристика измерительного преобразователя

Важнейшей характеристикой любого измерительного преобразователя является его основная погрешность , которая обусловлена принципом действия, несовершенством конструкции преобразователя или технологии его изготовления и проявляется при нормальных значениях влияющих величин или нахождении их в пределах области нормальных значений.

Основная погрешность измерительного преобразователя может иметь несколько составляющих, обусловленных:

Неточностью образцовых средств измерений, с помощью которых проводилось определение функции преобразования;

Отличием реальной градуировочной характеристики от номинальной функции преобразования; приближенным (табличным, графическим, аналитическим) выражением функции преобразования;

Неполным совпадением функции преобразования при возрастании и убывании измеряемой неэлектрической величины (гистерезис функции преобразования);

Неполной воспроизводимостью характеристик измерительного преобразователя (чаще всего чувствительности).

При градуировке серии однотипных преобразователей оказывается, что их характеристики несколько отличаются друг от друга, занимая некоторую полосу. Поэтому в паспорте измерительного преобразователя приводится некоторая средняя характеристика, называемая номинальной. Разности между номинальной (паспортной) и реальной характеристиками преобразователя рассматриваются как его погрешности.

Градуировка измерительного преобразователя (определение реальной функции преобразования) производится с использованием средств измерений неэлектрических и электрических величин. В качестве примера на рисунке 2 представлена структурная схема установки для градуировки реостатного преобразователя. В качестве средства измерения линейного перемещения (неэлектрической величины) используется линейка, а средства измерения электрической величины – активного сопротивления – цифровой измеритель L, C, R E7-8.

Рисунок 2 – Структурная схема установки для градуировки реостатного преобразователя

Процесс градуировки преобразователя заключается в следующем. С помощью механизма перемещения подвижный контакт (движок) реостатного преобразователя последовательно устанавливается на оцифрованные отметки шкалы линейки, и на каждой отметке производится измерение активного сопротивления преобразователя с помощью прибора Е7-8. Измеренные значения линейного перемещения и активного сопротивления заносятся в градуировочную таблицу 1.

Таблица 1

В этом случае получаем функцию преобразования измерительного преобразователя, заданную в табличной форме. Для получения графического изображения функции преобразования необходимо воспользоваться рекомендациями, приведенными на рисунке 1,а .

Следует, однако, иметь в виду, что измерение линейного перемещения и активного сопротивления произведено с погрешностью, обусловленной инструментальными погрешностями используемых средств измерений. В связи с этим и определение функции преобразования было произведено также с некоторой погрешностью (рисунок 3).

Рисунок 3 – Погрешности определения функции преобразования

Поскольку чувствительность преобразователя S , задаваемая наклоном функции преобразования, определяется по формуле (2), то расчет погрешности определения чувствительности преобразователя Δ S должен проводиться на основе алгоритма расчета погрешности результата косвенного измерения. В общем виде расчетная формула для Δ S выглядит следующим образом:

где
,

Δ y 1 и Δ y 2 – погрешности определения выходных величин y 1 и y 2 ,

Δ x 1 и Δ x 2 – погрешности определения входных величин x 1 и x 2 .

Дополнительные погрешности измерительного преобразователя, обусловленные его принципом действия, несовершенством конструкции и технологии изготовления, проявляются при отклонении влияющих величин от нормальных значений.

Кроме рассмотренных выше характеристик, измерительные преобразователи неэлектрических величин в электрические характеризуются: вариацией выходного сигнала, выходным полным сопротивлением, динамическими характеристиками . К важнейшим техническим характеристикам также относятся: габариты, масса, устойчивость к механическим, тепловым, электрическим и другим перегрузкам, надежность, удобство монтажа и обслуживания, взрывобезопасность, стоимость изготовления и т.п. .

Измерительные преобразователи различаются по принципу преобразования сигнала .

    В случае аналогового прямого преобразования (рисунок 4) измеряемая неэлектрическая величина X подается на вход первичного измерительного преобразователя (ПИП). Выходная электрическая величина Y преобразователя измеряется электрическим измерительным прибором (ЭИП), в состав которого входят измерительный преобразователь и индикаторное устройство.

Рисунок 4  Блок-схема прибора с аналоговым прямым преобразованием измеряемой неэлектрической величины

В зависимости от рода выходной величины и требований, предъявляемых к прибору, электрический измерительный прибор может быть различной степени сложности. В одном случае это  магнитоэлектрический милливольтметр, а в другом  цифровой измерительный прибор. Обычно шкалу индикаторного устройства ЭИП градуируют в единицах измеряемой неэлектрической величины. Измеряемая неэлектрическая величина может неоднократно преобразовываться для согласования пределов ее измерения с пределами преобразования ПИП и получения более удобного для ПИП вида входного воздействия. Для выполнения подобных преобразований в прибор вводят предвари тельные преобразователи неэлектрических величин в неэлектрические.

    При большом количестве промежуточных преобразователей в приборах прямого преобразования существенно возрастает суммарная погрешность. Для снижения погрешности применяют дифференциальные из мерительные преобразователи, которые имеют меньшую аддитивную погрешность, менее нелинейную функцию преобразования и более высокую чувствительность по сравнению с устройствами прямого преобразования.

На рисунке 5 показана структурная схема прибора с дифференциальным измерительным преобразователем (ДИП). Преобразователь включает в себя дифференциальное звено ДЗ с двумя выходами, два канала преобразования (П1 и П2) и вычитающее устройство ВУ. При изменении входной измеряемой величины x от начального значения x 0 до значения (x 0 + Δx) выходные величины x 1 и x 2 на выходе ДЗ получают приращения с разными знаками. После их преобразования в П1 и П2 значения на выходе преобразователей y 1 и y 2 вычитаются. В результате выходная величина ДИП (y = y 1 -y 2), поступающая на измерительный механизм ИМ, пропорциональна только приращению Δx измеряемой неэлектрической величины.

Рисунок 5 – Блок-схема прибора с дифференциальным преобразованием измеряемой неэлектрической величины

    В приборах с преобразованием, основанным на принципе компенсации (уравновешивания) в устройстве сравнения УС преобразователя происходит сопоставление измеряемой величины и однородной ей изменяемой величины, создаваемой узлом обратной связи УОС (рисунок 6) Сравнение величин производится до их полного уравновешивания. В качестве узлов обратной связи используются обратные преобразователи, преобразующие электрическую величину в неэлектрическую (например, лампы накаливания, электромеханические преобразователи и др.).

Рисунок 6 – Блок-схема прибора с компенсационным измерительным преобразователем

Приборы компенсационного сравнения по сравнению с приборами прямого преобразования позволяют получить более высокую точность, большее быстродействие, меньше потребляют энергии от объекта исследования.

Электрические приборы для измерения неэлектрических величин могут быть как аналоговыми, так и цифровыми .

Реостатные преобразователи

Реостатные преобразователи основаны на изменении электрического сопротивления проводника под влиянием входной величины – линейного или углового перемещения. Реостатный преобразователь представляет собой реостат (каркас с нанесенной на него проволочной обмоткой), подвижный контакт которого совершает линейное или угловое перемещение под воздействием измеряемой неэлектрической величины. Схематические изображения некоторых конструкций реостатных преобразователей приведены на рисунке 6, а-в. Габариты преобразователя определяются предельными значениями измеряемого перемещения, сопротивлением обмотки и электрической мощностью, рассеиваемой в обмотке. Для получения нелинейной функции преобразования применяют функциональные реостатные преобразователи. Нужный вид функции преобразования достигается профилированием каркаса преобразователя (рисунок 6, в ).

В реостатных преобразователях статическая характеристика преобразования имеет ступенчатый характер, поскольку сопротивление изменяется скачками, равными сопротивлению одного витка. Это вызывает появление соответствующей погрешности, максимальное значение которой можно представить в виде:

, (4)

где R  максимальное сопротивление одного витка;

R  полное сопротивление преобразователя.

В реохордных преобразователях, в которых подвижный контакт скользит вдоль оси проволоки, этой погрешности можно избежать.

Реостатные преобразователи включают в измерительные цепи в виде равновесных и неравновесных мостов, делителей напряжения и т.д.

Рисунок 7 – Реостатные измерительные преобразователи

Основными недостатками реостатных преобразователей являются наличие скользящего контакта, необходимость относительно больших его перемещений, а иногда и значительного усилия для перемещения. К достоинствам относятся простота конструкции и возможность получения значительных по уровню выходных сигналов.

Применяют реостатные преобразователи для измерения сравнительно больших линейных и угловых перемещений, а также других неэлектрических величин, которые могут быть преобразованы в перемещение (усилие, давление и т.п.).

Индуктивные преобразователи

Принцип действия индуктивных преобразователей основан на зависимости собственной или взаимной индуктивностей обмоток на магнитопроводе от взаимного положения, геометрических размеров и магнитного сопротивления элементов магнитной цепи. Из электротехники известно, что индуктивность L обмотки, расположенной на магнитном сердечнике (магнитопроводе), определяется выражением:

, (5)

где Z M  магнитное сопротивление магнитопровода;

w  число витков обмотки.

Взаимная индуктивность M двух обмоток, расположенных на одном магнитопроводе c магнитным сопротивлением Z M , определяется как

, (6)

где w 1 и w 2  число витков первой и второй обмоток.

Магнитное сопротивление определяется выражением:

, ` (7)

где

 активная составляющая магнитного сопротивления;

l i , S i ,  i

 соответственно длина, площадь поперечного сечения и относительная магнитная проницаемость i-го участка магнитопровода;

 магнитная постоянная;

 длина и площадь поперечного сечения воздушного участка магнитной цепи;

 реактивная составляющая магнитного сопротивления;

 потери мощности в магнитопроводе, обусловленные вихревыми токами и гистерезисом;

 угловая частота;

 магнитный поток в магнитопроводе.

Приведенные соотношения показывают, что индуктивность и взаимную индуктивность можно изменять, меняя длину δ или сечение S воздушного участка магнитной цепи, потери мощности Р в магнитопроводе и т. д.

На рисунке 8 схематически показаны различные типы индуктивных преобразователей. Изменение взаимной индуктивности может быть достигнуто, например, перемещением подвижного сердечника (якоря) 1 относительно неподвижного сердечника 2, введением немагнитной металлической пластины 3 в воздушный зазор (рисунок 8 а ).

Рисунок 8 – Индуктивные измерительные преобразователи

Индуктивный преобразователь с переменной длиной воздушного зазора  (рисунок 8,б ) характеризуется нелинейной зависимостью L = f (). Такой преобразователь имеет высокую чувствительность и обычно применяется при перемещении якоря магнитопровода в пределах от 0,01  5 мм.

Значительно меньшей чувствительностью, но линейной зависимостью функции преобразования L = f (S ) отличаются преобразователи с переменным сечением воздушного зазора (рисунок 8, в ). Такие преобразователи используют при измерении перемещений до 10  15 мм.

Широко распространение получили индуктивные дифференциальные преобразователи (рисунок 8, г ), в которых подвижный якорь помещен между двумя неподвижными сердечниками с обмотками. При перемещении якоря под воздействием измеряемой величины одновременно и с различными знаками изменяются длины δ 1 и δ 2 воздушных зазоров преобразователя, при этом индуктивность одной обмотки будет возрастать, а другой – уменьшаться. Дифференциальные преобразователи применяются в сочетании с мостовыми измерительными схемами. По сравнению с недифференциальными преобразователями они имеют более высокую чувствительность, меньшую нелинейность функции преобразования, испытывают меньшее влияние внешних факторов.

Для преобразования сравнительно больших перемещений (до 50 - 100 мм) применяют трансформаторные преобразователи с незамкнутой магнитной цепью (рисунок 8, д ).

Если ферромагнитный сердечник преобразователя подвергать механическому воздействию силой F, то вследствие изменения магнитной проницаемости материала сердечника изменится магнитное сопротивление цепи, что также повлечет изменение индуктивности L и взаимной индуктивности М обмоток. На этой зависимости основан принцип действия магнитоупругих преобразователей (рисунок 8,е ).

Индуктивные преобразователи используют для измерения линейных и угловых перемещений, а также других неэлектрических величин, которые могут быть преобразованы в перемещение (усилие, давление, момент сил и т.п.). Конструкция преобразователя определяется диапазоном измеряемых перемещений. Габариты преобразователя выбираются, исходя из необходимой мощности выходного сигнала.

Для измерения выходного параметра индуктивных преобразователей наибольшее применение получили мостовые (равновесные и неравновесные) и генераторные измерительные цепи, а также цепи с использованием резонансных контуров, которые обладают наибольшей чувствительностью вследствие большой крутизны функции преобразования.

По сравнению с другими преобразователями перемещения индуктивные преобразователи отличаются значительными по мощности выходными сигналами, простотой и надежностью в работе.

Их основными недостатками являются: обратное воздействие на исследуемый объект (воздействие электромагнита на якорь) и влияние инерции якоря на частотные характеристики прибора.

Емкостные преобразователи

Принцип действия емкостных измерительных преобразователей основан на зависимости электрической емкости конденсатора от размеров, взаимного расположения его обкладок и диэлектрической проницаемости среды между ними.

Электрическая емкость плоского конденсатора с двумя обкладками описывается выражением:

, (8)

Из данного выражения видно, что емкостной преобразователь может быть построен на основе использования зависимостей С = f (), С = f (S ) или C = f ().

На рисунке 9 схематически показано устройство различных емкостных преобразователей.

Рисунок 9 – Емкостные измерительные преобразователи

Преобразователь на рисунке 9, а представляет собой конденсатор, одна пластина которого перемещается под действием измеряемой неэлектрической величины X относительно неподвижной пластины. Статическая характеристика преобразователя, использующего зависимость С = f () является нелинейной. Чувствительность преобразователя возрастает с уменьшением расстояния между обкладками . Такие преобразователи используют для измерения малых перемещений (менее 1 мм).

Применяют также дифференциальные емкостные преобразователи (рисунок 9, б ), у которых имеется одна подвижная и две неподвижные пластины. При воздействии измеряемой величины X у этих преобразователей одновременно изменяются емкости С1 и С2.

На рисунке 9, в показан дифференциальный емкостной преобразователь с переменной активной площадью пластин, в котором используется зависимость С = f (S ) . Преобразователи с такой конструкцией используют для измерения сравнительно больших перемещений. В этих преобразователях требуемая характеристика преобразования легко может быть получена путем профилирования пластин.

Преобразователи с использованием зависимости С = f () применяют для измерения уровня жидкостей, влажности веществ, толщины изделий из диэлектриков и т.п. В качестве примера на рисунке 9, г приведено устройство преобразователя емкостного уровнемера. Емкость между электродами, опущенными в сосуд, зависит от уровня жидкости.

Для измерения выходного параметра емкостных измерительных преобразователей применяют мостовые, генераторные измерительные цени и цепи с использованием резонансных контуров. Последние позволяют создавать приборы с высокой чувствительностью, которые способны реагировать на линейные перемещения порядка 10 мкм. Цепи с емкостными преобразователями обычно питают током повышенной частоты (до десятков МГц).

Общие сведения.

В параметрических преобразователях выходной величиной является параметр электрической цепи . При использовании параметрических преобразователей необходим дополнительный источник питания, энергия которого используется для образования выходного сигнала преобразователя.

Реостатные преобразователи.

Реостатные преобразователи основаны на изменении электрического сопротивления проводника под влиянием входной величины - перемещения. Реостатный преобразователь представляет собой реостат, щетка (подвижный контакт) которого перемещается под воздействием измеряемой неэлектрической величины. На рис. 11-5 схематически показаны некоторые варианты конструкций реостатных преобразователей для углового (рис. 11-5, а) и линейного (рис. 11-5, б и в) перемещений. Преобразователь состоит из обмотки, нанесенной на каркас, и щетки. Для изготовления каркасов применяются диэлектрики и металлы. Проволоку для обмотки выполняют из сплавов (сплав платины с иридием, константан, нихром и фехраль). Для обмотки обычно используют изолированный провод. После изготовления обмотки изоляцию провода счищают в местах соприкосновения его со щеткой. Щетку преобразователя выполняют либо из проволок, либо из плоских пружинящих полосок, причем

Рис. 11-5. Реостатные преобразователи для угловых (а), линейных (б) перемещений и для функционального преобразования линейных перемещений (в)

используют как чистые металлы (платина, серебро), так и сплавы (платина с иридием, фосфористая бронза и т. д.).

Габариты преобразователя определяются значением измеряемого перемещения, сопротивлением обмотки и мощностью, выделяемой в обмотке.

Для получения нелинейной функции преобразования применяют функциональные реостатные преобразователи. Нужный характер преобразования часто достигается профилированием каркаса преобразователя (рис. 11-5, в).

В рассматриваемых реостатных преобразователях статическая характеристика преобразования имеет ступенчатый характер, так как сопротивление изменяется скачками, равными сопротивлению одного витка. Это вызывает погрешность, максимальное значение которой где максимальное сопротивление одного витка; - полное сопротивление преобразователя. Иногда применяют реохордные преобразователи, в которых щетка скользит вдоль оси проволоки. У этих преобразователей отсутствует указанная погрешность. Реостатные преобразователи включают в измерительные цепи в виде равновесных и неравновесных мостов, делителей напряжения и т.

К достоинствам преобразователей относится возможность получения высокой точности преобразования, значительных по уровню выходных сигналов и относительная простота конструкции. Недостатки - наличие скользящего контакта, необходимость относительно больших его перемещений, а иногда и значительного усилия для перемещения.

Применяют реостатные преобразователи для преобразования сравнительно больших перемещений и других неэлектрических величин (усилия, давления и т. п.), которые могут быть преобразованы в перемещение.

Тензочувствительные преобразователи (тензорезисторы).

В основу работы преобразователей положен тензоэффект, заключающийся в изменении активного сопротивления проводника (полупроводника) под действием вызываемого в нем механического напряжения и деформации.

Рис. 11-6. Тензочувствительный проволочный преобразователь

Если проволоку подвергнуть механическому воздействию, например растяжению, то сопротивление ее изменится. Относительное изменение сопротивления проволоки где - коэффициент тензочувствительности; - относительная деформация проволоки.

Изменение сопротивления проволоки при механическом воздействии на нее объясняется изменением геометрических размеров (длины, диаметра) и удельного сопротивления материала.

Тензочувствительные преобразователи, широко применяемые в настоящее время (рис. 11-6), представляют собой тонкую зигзагообразно уложенную и приклеенную к полоске бумаги (подложке проволоку 2 (проволочную решетку). Преобразователь включают в цепь с помощью привариваемых или припаиваемых выводов 3. Преобразователь наклеивают на поверхность исследуемой детали так, чтобы направление ожидаемой деформации совпадало с продольной осью проволочной решетки.

Для изготовления преобразователей применяют главным образом константановую проволоку диаметром мм Константан обладает малым температурным коэффициентом электрического сопротивления, что очень важно, так как изменение сопротивления преобразователей при деформациях, например, стальных деталей соизмеримо с изменением сопротивления преобразователя при изменении температуры. В качестве подложки используют тонкую мм) бумагу, а также пленку лака или клея, а при высоких температурах - слой цемента.

Применяют также фольговые преобразователи, у которых вместо проволоки используется фольга и пленочные тензорезисторы, получаемые путем возгонки тензочувствительного материала с последующим осаждением его на подложку.

Для наклеивания проволоки на подложку и всего преобразователя на деталь применяют клеи (раствор целлулоида в ацетоне, клей бакелитовый и т. д.). Для высоких температур (выше используют жаростойкие цементы, кремнийорганические лаки и клеи и т. п.

Преобразователи выполняют различных размеров в зависимости от назначения. Наиболее часто используют преобразователи с длиной решетки (базой) от 5 до 50 мм, имеющие сопротивление 30-500 Ом.

Изменение температуры вызывает изменение характеристики преобразования тензорезисторов, что объясняется температурной зависимостью сопротивления преобразователя и различием температурных коэффициентов линейного расширения материала тензорезистора и исследуемой детали. Влияние температуры устраняется обычно путем применения соответствующих методов температурной компенсации.

Наклеенный тензочувствительный преобразователь невозможно снять с одной детали и наклеить на другую. Поэтому для определения характеристик преобразования (коэффициента прибегают к выборочной градуировке преобразователей, что дает значение коэффициента с погрешностью Методы определения характеристик тензорезисторов регламентированы стандартом. Достоинства этих преобразователей - линейность статической характеристики преобразования, малые габариты и масса, простота конструкции. Недостатком их является малая чувствительность.

В тех случаях когда требуется высокая чувствительность, находят применение тензочувствительные преобразователи, выполненные в виде полосок из полупроводникового материала. Коэффициент таких преобразователей достигает нескольких сотен. Однако воспроизводимость характеристик полупроводниковых преобразователей плохая. В настоящее время серийно выпускают интегральные полупроводниковые тензорезисторы, образующие мост или полумост с элементами термокомпенсации.

В качестве измерительных цепей для тензорезисторов используют равновесные и неравновесные мосты. Тензорезисторы применяют для измерения деформаций и других неэлектрических величин: усилий, давлений, моментов и т. п.

Термочувствительные преобразователи (терморезисторы).

Принцип действия преобразователей основан на зависимости электрического сопротивления проводников или полупроводников от температуры.

Между терморезистором и исследуемой средой в процессе измерения происходит теплообмен. Так как терморезистор при этом включен в электрическую цепь, с помощью которой производят измерение его сопротивления, то по нему протекает ток, выделяющий в нем теплоту. Теплообмен терморезистора со средой происходит из-за теплопроводности среды и конвекции в ней, теплопроводности самого терморезистора и арматуры, к которой он крепится, и, наконец, из-за излучения. Интенсивность

Рис. 11-7. Устройство (а) и внешний вид арматуры (б) платинового терморезистора

теплообмена, а следовательно, и температура терморезистора зависят от его геометрических размеров и формы, от конструкции защитной арматуры, от состава, плотности, теплопроводности, вязкости и других физических свойств газовой или жидкой среды, окружающей терморезистор, а также от температуры и скорости перемещения среды.

Таким образом, зависимость температуры, а следовательно, и сопротивления терморезистора от перечисленных выше факторов может быть использована для измерения различных неэлектрических величин, характеризующих газовую или жидкую среду. При конструировании преобразователя стремятся к тому, чтобы теплообмен терморезистора со средой в основном определялся измеряемой неэлектрической величиной.

По режиму работы терморезисторы бывают перегревные и без преднамеренного перегрева. В преобразователях без перегрева ток, проходящий через терморезистор, практически не вызывает перегрева, и температуру последнего определяет температура среды; эти преобразователи применяют для измерения температуры. В перегревных преобразователях электрический ток вызывает перегрев, зависящий от свойств среды. Перегревные преобразователи используют для измерения скорости, плотности, состава среды и т. д. Так как на перегревные терморезисторы влияет температура среды, обычно применяют схемные методы компенсации этого влияния.

Для измерения температуры наиболее распространены терморезисторы, выполненные из платиновой или медной проволоки.

Стандартные платиновые терморезисторы применяют для измерения температуры в диапазоне от -260 до медные - в диапазоне от -200 до +200 °С (ГОСТ 6651-78).

Низкотемпературные платиновые терморезисторы (ГОСТ 12877-76) применяют для измерения температуры в пределах от -261 до

На рис. 11-7, а показано устройство платинового терморезистора. В каналах керамической трубки 2 расположены две (или четыре) секции спирали 3 из платиновой проволоки, соединенные между собой последовательно. К концам спирали припаивают выводы используемые для включения терморезистора в измерительную цепь. Крепление выводов и герметизацию керамической трубки производят глазурью Каналы трубки засыпают порошком безводного оксида алюминия, выполняющим роль изолятора и фиксатора спирали. Порошок безводного оксида алюминия, имеющий высокую теплопроводность и малую теплоемкость, обеспечивает хорошую передачу теплоты и малую инерционность терморезистора. Для защиты терморезистора от механических и химических воздействий внешней среды его помещают в защитную арматуру (рис. 11-7, б) из нержавеющей стали.

Начальные сопротивления (при платиновых стандартных терморезисторов равны 1, 5, 10, 46, 50, 100 и 500 Ом, медных и 100 Ом.

Допустимое значение тока, протекающего по терморезистору при включении его в измерительную цепь, должно быть таким, чтобы изменение сопротивления терморезистора при нагреве не превышало начального сопротивления.

Статические характеристики преобразования в виде таблиц (градуировочных) и допускаемые отклонения этих характеристик для стандартных терморезисторов приведены в ГОСТ 6651-78.

Аналитически зависимость сопротивления от температуры для платиновых терморезисторов выражают следующими уравнениями:

где - сопротивление при

Для медного терморезистора

Помимо платины и меди, иногда для изготовления терморезисторов используют никель.

Для измерения температуры применяют также полупроводниковые терморезисторы (термисторы) различных типов, которые характеризуются большей чувствительностью (ТКС

термисторов отрицательный и при в 10-15 раз превышает меди и платины) и имеют более высокие сопротивления (до 1 МОм) при весьма малых размерах. Недостаток термисторов - плохая воспроизводимость и нелинейность характеристики преобразования:

где и - сопротивления термистора при температурах Т и То - начальная температура рабочего диапазона; В - коэффициент.

Термисторы используют в диапазоне температур от -60 до

Для измерения температуры от -80 до применяют термодиоды и термотранзисторы, у которых под действием температуры изменяется сопротивление р-п-перехода и падение напряжения на этом переходе. Чувствительность термотранзистора по напряжению что значительно превышает чувствительность стандартных термопар (см. табл. 11-1). Эти преобразователи обычно включают в мостовые цепи и цепи в виде делителей напряжения.

Достоинствами термодиодов и термотранзисторов являются высокая чувствительность, малые размеры и малая инерционность, высокая надежность и дешевизна; недостатками - узкий температурный диапазон и плохая воспроизводимость статической характеристики преобразования. Влияние последнего недостатка уменьшают применением специальных цепей.

Тепловую инерционность стандартных терморезисторов согласно ГОСТ 6651-78 характеризуют показателем тепловой инерции определяемым как время, необходимое для того, чтобы при внесении преобразователя в среду с постоянной температурой разность температур среды и любой точки внесенного в нее преобразователя стала равной 0,37 того значения, которое она имела в момент наступления регулярного теплового режима. Показатель тепловой инерции определяют по той части кривой переходного теплового процесса преобразователя, которая соответствует регулярному режиму, т. е. имеет экспоненциальный характер (в полулогарифмическом масштабе - прямая линия). Значение для различных типов стандартных преобразователей находится в пределах от нескольких десятков секунд до нескольких минут.

Когда необходимы малоинерционные терморезисторы, для их изготовления используют очень тонкий провод (микропровод) или применяют термисторы малого объема (бусинковые) или термотранзисторы.

Рис. 11-8. Преобразователь газоанализатора, основанный на принципе измерения теплопроводности

Рис. 11-9. Зависимость теплопроводности газа от давления

Терморезисторы применяют в приборах для анализа газовых смесей. Многие газовые смеси отличаются друг от друга и от воздуха теплопроводностью. Теплопроводность смеси, состоящей из двух газов, не вступающих в реакцию друг с другом, где а- процентное содержание первого (искомого) компонента; теплопроводность, соответственно, первого и второго компонентов. Таким образом, измеряя теплопроводность газовой смеси можно судить о процентном содержании искомого компонента (при

В приборах для газового анализа - газоанализаторах - для измерения теплопроводности используют перегревный платиновый терморезистор 1 (рис. 11-8), помещенный в камеру 2 с анализируемым газом. Конструкция терморезистора, арматуры и камеры, а также значение нагревающего тока выбирают такими, чтобы теплообмен со средой осуществлялся в основном за счет теплопроводности газозой среды.

Для исключения влияния внешней температуры, кроме рабочей, используют компенсационную камеру с терморезистором, заполненную постоянным по составу газом. Обе камеры выполняют в виде единого блока, что обеспечивает камерам одинаковые температурные условия. Рабочий и компенсационный терморезисторы при измерениях включают в соседние плечи моста, что приводит к компенсации влияния температуры.

Терморезисторы применяют в приборах для измерения степени разреженности. На рис. 11-9 показана зависимость теплопроводности газа, находящегося между телами Л и Б, от его давления. Характер этой зависимости объясняют следующим образом.

Теплопроводность газа где - коэффициент пропорциональности; плотность газа; средняя длина пути свободного пробега молекул. В свою очередь, где и кг - коэффициенты пропорциональности; число молекул в единице объема. Следовательно, при давлениях Газа, близких к атмосферному,

При разрежении газа, когда длина пути свободного пробега молекул теоретически станет равной расстоянию между телами Ли Б или больше него, практически длина пути свободного пробега молекул будет ограничена расстоянием т. е. в этом случае и теплопроводность газа

Таким образом, теплопроводность газа становится зависимой от числа молекул в единице объема, т. е. от давления (степени разреженности). Зависимость теплопроводности газа от давления используют в вакуумметрах - приборах для измерения степени разреженности.

Для измерения теплопроводности в вакуумметрах используют металлические (платиновые) и полупроводниковые терморезисторы, помещаемые в стеклянный или металлический баллон, который соединяют с контролируемой средой.

Терморезисторы применяют в приборах для измерения скорости газового потока - термоанемометрах. Установившаяся температура перегрезного терморезистора, помещенного на пути газового потока, зависит от скорости потока. В этом случае основным путем теплообмена терморезистора со средой будет конвекция (принудительная). Изменение сопротивления терморезистора вследствие уноса теплоты с его поверхности движущейся средой функционально связано со скоростью среды.

Конструкцию и тип терморезистора, арматуру и нагревающий терморезистор ток выбирают такими, чтобы были снижены или исключены все пути теплообмена, кроме конвективного.

Достоинствами термоанемометров являются высокая чувствительность и быстродействие. Эти приборы позволяют измерять скорости от 1 до 100-200 м/с при использовании измерительной цепи, с помощью которой температура терморезистора автоматически поддерживается почти неизменной.

Электролитические преобразователи.

Электролитические преобразователи основаны на зависимости электрического сопротивления раствора электролита от его концентрации. В основном их применяют для измерения концентраций растворов.

На рис. 11-10 для примера показаны графики зависимостей удельной электрической проводимости у некоторых растворов электролитов от концентрации с растворенного вещества. Из этого рисунка следует, что в определенном диапазоне изменения концентрации зависимость электрической проводимости от

Рис. 11-10. Зависимость удельной электрической проводимости растворов электролитов от концентрации растворенного вещества

Рис. 11-11. Лабораторный электролитический преобразователь

концентрации однозначна и может быть использована для определения с.

Преобразователь, применяемый в лабораторных условиях для измерения концентрации, представляет собой сосуд с двумя электродами (электролитическая ячейка) (рис. 11-11). Для промышленных непрерывных измерений преобразователи выполняют проточными, причем часто используют конструкции, в которых роль второго электрода играют стенки сосуда (металлические).

Электрическая проводимость растворов зависит от температуры. В первом приближении эту зависимость выражают уравнением где - электрическая проводимость при начальной температуре ; Р - температурный коэффициент электрической проводимости (для растворов кислот, оснований и солей

Таким образом, при использовании электролитических преобразователей необходимо устранять влияние температуры. Эту задачу решают путем стабилизации температуры раствора с помощью холодильника (нагревателя) или применения цепей температурной компенсации с медными терморезисторами, так как температурные коэффициенты проводимости меди и растворов электролитов имеют противоположные знаки.

При прохождении постоянного тока через преобразователь происходит электролиз раствора, что приводит к искажению результатов измерения. Поэтому измерения сопротивления раствора обычно проводят на переменном токе (700-1000 Гц), чаще всего с помощью мостовых цепей.

Индуктивные преобразователи.

Принцип действия преобразователей основан на зависимости индуктивности или взаимной индуктивности обмоток на магнитопроводе от положения,

Рис. 11-12. Магнитопровод с зазорами и двумя обмотками

геометрических размеров и магнитного состояния элементов их магнитной цепи.

Индуктивность обмотки, расположенной на магнитопроводе (рис. 11-12), где - магнитное сопротивление магнитопровода; - число витков обмотки.

Взаимная индуктивность двух обмоток, расположенных на том же магнитопроводе, где - число витков первой и второй обмоток.

Магнитное сопротивление определяется выражением

где - активная составляющая магнитного сопротивления (рассеиванием магнитного потока пренебрегаем); - соответственно длина, площадь поперечного сечения и относительная магнитная проницаемость участка магнитопровода; - магнитная постоянная; - длина воздушного зазора; 5 - площадь поперечного сечения воздушного участка магнитопровода; - реактивная составляющая магнитного сопротивления; Р - потери мощности в магнитопроводе, обусловленные вихревыми токами и гистерезисом; - угловая частота; Ф - магнитный поток в магнитопроводе.

Приведенные соотношения показывают, что индуктивность и взаимную индуктивность можно изменять, воздействуя на длину сечение воздушного участка магнитопровода на потери мощности в магнитопроводе и другими путями. Этого можно достичь, например, перемещением подвижного сердечника (якоря) 1 (рис. 11-12) относительно неподвижного 2, введением немагнитной металлической пластины 3 в воздушный зазор и т.

На рис. 11-13 схематически показаны различные типы индуктивных преобразователей. Индуктивный преобразователь (рис. 11 -13, а) с переменной длиной воздушного зазора характеризуется нелинейной зависимостью Такой преобразователь обычно применяют при перемещениях якоря на мм. Значительно меньшей чувствительностью, но линейной зависимостью отличаются преобразователи с переменным сечением воздушного зазора (рис. 11-13, б). Эти преобразователи используют при перемещениях до 10-15 мм.

Рис. 11-13. Индуктивные преобразователи с изменяющейся длиной зазора (а), с изменяющимся сечением зазора (б), дифференциальный (в), дифференциальный трансформаторный дифференциальный трансформаторный с разомкнутой магнитной цепью и магнитоупругий

Якорь в индуктивном преобразователе испытывает усилие (нежелательное) притяжения со стороны электромагнита

где - энергия магнитного поля; - индуктивность преобразователя; - ток, проходящий через обмотку преобразователя.

Широко распространены индуктивные дифференциальные преобразователи (рис. 11-13, в), в которых под воздействием измеряемой величины одновременно и притом с разными знаками изменяются два зазора электромагнитов. Дифференциальные преобразователи в сочетании с соответствующей измерительной цепью (обычно мостовой) имеют более высокую чувствительность, меньшую нелинейность характеристики преобразования, испытывают меньшее влияние внешних факторов и сниженное результирующее усилие на якорь со стороны электромагнита, чем недифференциальные преобразователи.

На рис. 11-13, г показана схема включения дифференциального индуктивного преобразователя, у которого выходными величинами являются взаимные индуктивности. Такие преобразователи называют взаимно-индуктивными или трансформаторными. При питании первичной обмотки переменным током и при симметричном положении якоря относительно электромагнитов ЭДС на

Рис. 11-14. Устройство (а) и вид печатной обмотки (б) индуктосина

выходных зажимах равна нулю. При перемещении якоря на выходных зажимах появляется ЭДС.

Для преобразования сравнительно больших перемещений (до 50-100 мм) применяют трансформаторные преобразователи с незамкнутой магнитной цепью (рис. 11-13, (9).

Применяют трансформаторные преобразователи угла поворота, состоящие из неподвижного статора и подвижного ротора с обмотками. Обмотку статора питают переменным током. Поворот ротора вызывает изменение значения и фазы наводимой в его обмотке ЭДС. При повороте ротора на угол - число полюсов статора) фаза этой ЭДС изменяется на 180°. Такие преобразователи используют при измерении больших угловых перемещений.

Для измерения малых угловых перемещений используют индуктосины (рис. 11-14). Ротор 1 и статор индуктосина снабжают печатными обмотками 3, имеющими вид радиального растра. Принцип действия индуктосина аналогичен описанному выше. Нанесением обмоток печатным способом удается получить большое число полюсных шагов обмотки, что обеспечивает высокую чувствительность преобразователя к изменению угла поворота.

Если ферромагнитный сердечник преобразователя подвергать механическому воздействию то вследствие изменения магнитной проницаемости материала сердечника изменится магнитное сопротивление цепи, что повлечет за собой изменение индуктивности и взаимной индуктивности М обмоток. На этом принципе основаны магнитоупругие преобразователи (рис. 11-13, е).

Конструкция преобразователя определяется диапазоном измеряемого перемещения. Габариты преобразователя выбирают исходя из необходимой мощности выходного сигнала.

Для измерения выходного параметра индуктивных преобразователей наибольшее применение получили мостовые (равновесные и неравновесные) цепи, а также компенсационная (в автоматических приборах) цепь для дифференциальных трансформаторных преобразователей.

Индуктивные преобразователи используют для преобразования перемещения и других неэлектрических величин, которые

Рис. 11-15. Емкостные преобразователи с изменяющимся расстоянием между пластинами (а), дифференциальный (б), дифференциальный с переменной активной площадью пластин (в) и с изменяющейся диэлектрической проницаемостью среды между пластинами (г)

могут быть преобразованы в перемещение (усилие, давление, момент и т. д.).

По сравнению с другими преобразователями перемещения индуктивные преобразователи отличаются значительными по мощности выходными сигналами, простотой и надежностью в работе.

Недостаток их - обратное воздействие преобразователя на исследуемый объект (воздействие электромагнита на якорь) и влияние инерции якоря на частотные характеристики прибора.

Емкостные преобразователи.

Емкостные преобразователи основаны на зависимости электрической емкости конденсатора от размеров, взаимного расположения его обкладок и от диэлектрической проницаемости среды между ними.

Для двухобкладочного плоского конденсатора электрическая емкость где - электрическая постоянная; - относительная диэлектрическая проницаемость среды между обкладками; - активная площадь обкладок; - расстояние между обкладками. Из выражения для емкости видно, что преобразователь может быть построен с использованием зависимостей

На рис. 11-15 схематически показано устройство различных емкостных преобразователей. Преобразователь на рис. 11-15, а представляет собой конденсатор, одна пластина которого перемещается под действием измеряемой величины х относительно неподвижной пластины. Статическая характеристика преобразования нелинейна. Чувствительность преобразователя возрастает с уменьшением расстояния Такие преобразователи используют для измерения малых перемещений (менее 1 мм).

Малое рабочее перемещение пластин приводит к погрешности от изменения расстояния между пластинами при колебаниях температуры. Выбором размеров деталей преобразователя и материалов добиваются снижения этой погрешности.

В емкостных преобразователях возникает усилие (нежелательное) притяжения между пластинами

где - энергия электрического поля; - соответственно напряжение и емкость между пластинами.

Применяют также дифференциальные преобразователи (рис. 11-15, б), у которых имеется одна подвижная и две неподвижные пластины. При воздействии измеряемой величины этих преобразователей одновременно изменяются емкости На рис. 11-15, в показан дифференциальный емкостной преобразователь с переменной активной площадью пластин. Такой преобразователь используют для измерения сравнительно больших линейных (более 1 мм) и угловых перемещений. В этих преобразователях легко получить требуемую характеристику преобразования путем профилирования пластин.

Преобразователи с использованием зависимости применяют для измерения уровня жидкостей, влажности веществ, толщины изделий из диэлектриков и т. п. Для примера (рис. 11-15, г) дано устройство преобразователя емкостного уровнемера. Емкость между электродами, опущенными в сосуд, зависит от уровня жидкости, так как изменение уровня ведет к изменению средней диэлектрической проницаемости среды между электродами. Изменением конфигурации пластин можно получить желаемый характер зависимости показаний прибора от объема (массы) жидкости.

Для измерения выходного параметра емкостных преобразователей применяют мостовые цепи и цепи с использованием резонансных контуров. Последние позволяют создавать приборы с высокой чувствительностью, способные реагировать на перемещения порядка 10-7 мм. Цепи с емкостными преобразователями обычно питают током повышенной частоты (до десятков мегагерц), что вызвано желанием увеличить сигнал, попадающий в измерительный прибор, и необходимостью уменьшить шунтирующее действие сопротивления изоляции.

Рис. 11-16. Схема ионизационного преобразователя

Рис. 11-17. Вольт-амперная характеристика ионизационного преобразователя

включения и необходимость в специальных источниках питания повышенной частоты.

Ионизационные преобразователи.

Преобразователи основаны на явлении ионизации газа или люминесценции некоторых веществ под действием ионизирующего излучения.

Если камеру, содержащую газ, подвергнуть облучению, например, -лучами, то между электродами, включенными в электрическую цепь (рис. 11-16), потечет ток. Этот ток зависит от приложенного к электродам напряжения, от плотности и состава газовой среды, размера камеры и электродов, свойств и интенсивности ионизирующего излучения и т. д. Эти зависимости используют для измерения различных неэлектрических величин: плотности и состава газовой среды, геометрических размеров деталей и т. д.

В качестве ионизирующих агентов применяют и у-лучи радиоактивных веществ, значительно реже - рентгеновские лучи и нейтронное излучение.

Для измерения степени ионизации используют преобразователи - ионизационные камеры и ионизационные счетчики, действие которых соответствует различным участкам вольт-амперной характеристики газового промежутка между двумя электродами. На рис. 11-17 показана зависимость тока I в камере (рис. 11-16) с постоянным составом газа от приложенного напряжения и интенсивности излучения На участке Л характеристики ток увеличивается прямо пропорционально напряжению, затем рост его замедляется и на участке Б достигает насыщения. Это указывает на то, что все ионы, образующиеся в камере, достигают электродов. На участке Б ионизационный ток снова начинает расти, что вызывается вторичной ионизацией при ударениях первичных электронов и ионов о нейтральные молекулы. При дальнейшем увеличении напряжения (участок Г) ионизационный перестает зависеть от первоначальной ионизации и наступает

непрерывный разряд (участок Д), который уже не зависит от воздействия радиоактивного излучения.

Участки А и Б вольт-амперной характеристики описывают действие ионизационных камер, а участки Б и Г - ионизационных счетчиков. Кроме ионизационных камер и счетчиков, в качестве ионизационных преобразователей применяют сцинтилляционные (люминесцентные) счетчики. Принцип действия этих счетчиков основан на возникновении в некоторых веществах - фосфорах (активированные серебром сернистый цинк, сернистый кадмий и др.) - под действием радиоактивных излучений световых вспышек (сцинтилляций), которые в счетчиках регистрируются фотоумножителями. Яркость этих вспышек, а следовательно, и ток фотоумножителя определяются радиоактивным излучением.

Выбор типа ионизационного преобразователя зависит в значительной мере от ионизирующего излучения.

Альфа-лучи (ядра атома гелия) обладают большой ионизирующей способностью, но имеют малую проникающую способность. В твердых телах а-лучи поглощаются в очень тонких слоях (еди-ницы-десятки микрометров). Поэтому при использовании а-лучей а-излучатель помещают внутрь преобразователя.

Бета-лучи представляют собой поток электронов (позитронов); они обладают значительно меньшей ионизирующей способностью, чем а-лучи, но зато имеют более высокую проникающую способность. Длина пробега р-частиц в твердых телах достигает нескольких миллиметров. Поэтому -излучатель может располагаться как внутри, так и вне преобразователя.

Изменение расстояния между электродами, площади перекрытия электродов или положения источника радиоактивного -излучения относительно ионизационных камер или счетчиков сказывается на значении ионизационного тока. Поэтому указанные зависимости используют для измерения различных механических и геометрических величин.

Конструкции ионизационных камер и счетчиков разнообразны и зависят от вида излучения.

Для регистрации отдельных частиц, а также измерения небольших -излучений широко применяют так называемые газоразрядные счетчики, действие которых описывают участки В и Г вольт-амперной характеристики. Устройство газоразрядного счетчика показано на рис. 11-19. Счетчик состоит из металлического цилиндра 1, внутри которого натянута тонкая вольфрамовая проволока 2. Оба эти электрода помещены в стеклянный цилиндр 3 с инертным газом. При ионизации газа в цепи счетчика появляются импульсы тока, число которых подсчитывается.

В качестве источников и у-излучений обычно используют радиоактивные изотопы. Источники излучения, применяемые в измерительной технике, должны иметь значительный период полураспада и достаточную энергию излучения (кобальт-60, стронций-90, плутоний-239 и др.).

Основное достоинство приборов, использующих ионизирующие излучения, заключается в возможности бесконтактных измерений, что имеет большое значение, например, при измерениях в агрессивных или взрывоопасных средах, а также в средах, находящихся под большим давлением или имеющих высокую температуру. Основной недостаток этих приборов - необходимость применения биологической защиты при высокой активности источника излучения.


Термометры сопротивления. Термометры сопротивления как и термопары, предназначены для измерения температуры газообразных, твердых и жидких тел, а также температуры поверхности. Принцип действия термометров основан на использовании свойства металлов и полупроводников изменять свое электрическое сопротивление с температурой. Для проводников из чистых металлов эта зависимость в области температур от –200 °С до 0 °С имеет вид:

R t =R 0 ,

а в области температур от 0 °С до 630 °С

R t =R 0 ,

где R t , R 0 - сопротивление проводника при температуре t и 0 °С; А, В, С - коэффициенты; t - температура, °С.

В диапазоне температур от 0 °С до 180 °С зависимость сопротивления проводника от температуры описывается приближенной формулой

R t =R 0 ,

где α - температурный коэффициент сопротивления материала проводника (ТКС).

Для проводников из чистого металла α≈ 6-10 -3 ...4-10 -3 град -1 .

Измерение температуры термометром сопротивления сводится к измерению его сопротивления R t , с последующим переходом к температуре по формулам или градуировочным таблицам.

Различают проволочные и полупроводниковые термометры сопротивления. Проволочный термометр сопротивления представляет собой тонкую проволоку из чистого металла, закрепленную на каркасе из температуростойкого материала (чувствительный элемент), помещенную в защитную арматуру (рис. 5.4).

Рис. 5.4. Чувствительный элемент термометра сопротивления

Выводы от чувствительного элемента подведены к головке термометра. Выбор для изготовления термометров сопротивления проволок из чистых металлов, а не сплавов, обусловлен тем, что ТКС чистых металлов больше, чем ТКС сплавов и, следовательно, термометры на основе чистых металлов обладают большей чувствительностью.

Промышленностью выпускаются платиновые, никелевые и медные термометры сопротивления. Для обеспечения взаимозаменяемости и единой градуировки термометров стандартизованы величины их сопротивления R 0 и ТКС.

Полупроводниковые термометры сопротивления (термисторы) представляют собой бусинки, диски или стержни из полупроводникового материала с выводами для подключения в измерительную цепь.

Промышленность серийно выпускает множество типов термисторов в различном конструктивном оформлении.

Размеры термисторов, как правило, малы - около нескольких миллиметров, а отдельные типы десятых долей миллиметра. Для предохранения от механических повреждений и воздействия среды термисторы защищаются покрытиями из стекла или эмали, а также металлическими чехлами.

Термисторы обычно имеют сопротивление от единиц до сотен килоом; их ТКС в рабочем диапазоне температур на порядок больше, чем у проволочных термометров. В качестве материалов для рабочего тела термисторов используют смеси оксидов никеля, марганца, меди, кобальта, которые смешивают со связующим веществом, придают ему требуемую форму и спекают при высокой температуре. Применяют термисторы для измерения температур в диапазоне от -100 до 300°С. Инерционность термисторов сравнительно невелика. К числу их недостатков следует отнести нелинейность температурной зависимости сопротивления, отсутствие взаимозаменяемости из-за большого разброса номинального сопротивления и ТКС, а также необратимое изменение сопротивления во времени.

Для измерения в области температур, близких к абсолютному нулю, применяются германиевые полупроводниковые термометры.

Измерение электрического сопротивления термометров производится с помощью мостов постоянного и переменного тока или компенсаторов. Особенностью термометрических измерений является ограничение измерительного тока с тем, чтобы исключить разогрев рабочего тела термометра. Для проволочных термометров сопротивления рекомендуется выбрать такой измерительный ток, чтобы мощность, рассеиваемая термометром, не превышала 20 ... 50 мВт. Допустимая рассеиваемая мощность в термисторах значительно меньше и ее рекомендуется определять экспериментально для каждого термистора.

Тензочувствительные преобразователи (тензорезисторы). В конструкторской практике часто необходимы измерения механических напряжений и деформаций в элементах конструкций. Наиболее распространенными преобразователями этих величин в электрический сигнал являются тензорезисторы. В основе работы тензорезисторов лежит свойство металлов и полупроводников изменять свое электрическое сопротивление под действием приложенных к ним сил. Простейшим тензорезистором может быть отрезок проволоки, жестко сцепленный с поверхностью деформируемой детали. Растяжение или сжатие детали вызывает пропорциональное растяжение или сжатие проволоки, в результате чего изменяется ее электрическое сопротивление. В пределах упругих деформаций относительное изменение сопротивления проволоки связано с ее относительным удлинением соотношением

ΔR/R=K Τ Δl/l,

где l, R - начальные длина и сопротивление проволоки; Δl , ΔR - приращение длины и сопротивления; K Τ - коэффициент тензочувствительности.

Величина коэффициента тензочувствительности зависит от свойств материала, из которого изготовлен тензорезистор, а также от способа крепления тензорезистора к изделию. Для металлических проволок из различных металлов K Τ = 1... 3,5.

Различают проволочные и полупроводниковые тензорезисторы. Для изготовления проволочных тензорезисторов применяются материалы, имеющие достаточно высокий коэффициент тензочувствительности и малый температурный коэффициент сопротивления. Наиболее употребительным материалом для изготовления проволочных тензорезисторов является константановая проволока диаметром 20 ... 30 мкм.

Конструктивно, проволочные тензорезисторы представляют собой решетку, состоящую из нескольких петель проволоки, наклеенных на тонкую бумажную (или иную) подложку (рис. 5.5). В зависимости от материала подложки тензорезисторы могут работать при температурах от -40 до +400 °С.

Рис. 5.5. Тензометр

Существуют конструкции тензорезисторов, прикрепляемых к поверхности деталей с помощью цементов, способные работать при температурах до 800 °С.

Основными характеристиками тензорезисторов являются номинальное сопротивление R, база l и коэффициент тензочувствительности K Τ . Промышленностью выпускается широкий ассортимент тензорезисторов с величиной базы от 5 до 30мм, номинальными сопротивлениями от 50 до 2000 Ом, с коэффициентом тензочувствительности 2±0,2.

Дальнейшим развитием проволочных тензорезисторов являются фольговые и пленочные тензорезисторы, чувствительным элементом которых являются решетка из полосок фольги или тончайшая металлическая пленка, наносимые на подложки на лаковой основе.

Тензорезисторы выполняются, на основе полупроводниковых материалов. Наиболее сильно тензоэффект выражен у германия, кремния и др. Основным отличием полупроводниковых тензорезисторов от проволочных является большое (до 50 %) изменение сопротивления при деформации благодаря большой величине коэффициента тензочувствительности.

Индуктивные преобразователи. Индуктивные преобразователи применяются для измерения перемещений, размеров, отклонений формы и расположения поверхностей. Преобразователь состоит из неподвижной катушки индуктивности с магнитопроводом и якоря, также являющегося частью магнитопровода, перемещающегося относительно катушки индуктивности. Для получения возможно большей индуктивности магнитопровод катушки и якорь выполняются из ферромагнитных материалов. При перемещении якоря (связанного, например, со щупом измерительного устройства) изменяется индуктивность катушки и, следовательно, изменяется ток, протекающий в обмотке. На рис. 5.6 приведены схемы индуктивных преобразователей с переменным воздушным зазором d (рис. 5.6а ) применяемых для измерения перемещения в пределах 0,01…10 мм; с переменной площадью воздушного зазора S δ (рис. 5.6б ), применяемых в диапазоне 5 … 20 мм.

Рис. 5.6. Индуктивные преобразователи перемещений

5.2. Операционные усилители

Операционный усилитель (ОУ) - это дифференциальный усилитель постоянного тока с очень большим коэффициентом усиления. Для усилителя напряжения передаточная функция (коэффициент усиления) определяется выражением

Для упрощения конструкторских расчетов предполагается, что идеальный ОУ имеет следующие характеристики.

1. Коэффициент усиления при разомкнутой петле обратной связи равен бесконечности.

2. Входное сопротивление R d равно бесконечности.

3. Выходное сопротивление R 0 = 0.

4. Ширина полосы пропускания равна бесконечности.

5. V 0 = 0 при V 1 = V 2 (отсутствует напряжение смещения нуля).

Последняя характеристика очень важна. Так как V 1 -V 2 = V 0 / А, то если V 0 имеет конечное значение, а коэффициент А бесконечно велик (типичное значение 100000) будем иметь

V 1 - V 2 = 0 и V 1 = V 2.

Поскольку входное сопротивление для дифференциального сигнала(V 1 - V 2)

также очень велико, то можно пренебречь током через R d .Эти два допущения существенно упрощают разработку схем на ОУ.

Правило1. При работе ОУ в линейной области на двух его входах действуют одинаковые напряжения.

Правило2. Входные токи для обоих входов ОУ равны нулю.

Рассмотрим базовые схемные блоки на ОУ. В большинстве этих схем ОУ используется в конфигурации с замкнутой петлей обратной связи.

5.2.1. Усилитель с единичным коэффициентом усиления

(повторитель напряжения)

Если в неинвертирующеи усилителе положить R i равным бесконечности, а R f равным нулю, то мы придем к схеме, изображенной на рис. 5.7.



Согласно правилу 1, на инвертирующем входе ОУ тоже действует входное напряжение V i , которое непосредственно передается на выход схемы. Следовательно, V 0 = V i , и выходное напряжение отслеживает (повторяет) входное напряжение. У многих аналого-цифровых преобразователей входное сопротивление зависит от значения аналогичного входного сигнала. С помощью повторителя напряжения обеспечивается постоянство входного сопротивления.

5.2.2. Сумматоры

Инвертирующий усилитель может суммировать несколько входных напряжений. Каждый вход сумматора соединяется с инвертирующим входом ОУ через взвешивающий резистор. Инвертирующий вход называется суммирующим узлом, поскольку здесь суммируются все входные токи и ток обратной связи. Базовая принципиальная схема суммирующего усилителя представлена на рис. 5.8.



Как и в обычном инвертирующем усилителе, напряжение на инвертирующем входе должно быть равно нулю, следовательно, равен нулю и ток, втекающий в ОУ. Таким образом,

i f = i 1 + i 2 + . . . + i n

Так как на инвертирующем входе действует нулевое напряжение, то после соответствующих подстановок, получаем

V 0 = -R f ( +. . . + ).

Резистор R f определяет общее усиление схемы. Сопротивления R 1, R 2, . . . R n задают значения весовых коэффициентов и входных сопротивлений соответ-ствующих каналов.

5.2.3. Интеграторы

Интегратор – это электронная схема, которая вырабатывает выходнойсигнал, пропорциональный интегралу (по времени) от входного сигнала.



На рис. 5.9 показана принципиальная схема простого аналогового интегратора.Один вывод интегратора присоединен к суммирующему узлу, а другой – к выходу интегратора. Следовательно, напряжение на конденсоторе одновре-менно является выходным напряжением. Выходной сигнал интегратора не удается описать простой алгебраической зависимостью, поскольку при фикси-рованном входном напряжении выходное напряжение изменяется со скорос-тью, определяемом параметрами V i ,R и C. Таким образом, для того, чтобы найти выходное напряжение, нужно знать длительность действия входного сигнала. Напряжение на первоначально разряженном конденсаторе

где i f – через конденсатор и t i - время интегрирования. Для положительного

Vi имеем i i = V i /R. Поскольку i f = i i , то с учетом инверсии сигнала получаем

Из этого соотношения следует, что V 0 определяется интегралом (с обратным знаком) от входного напряжения в интервале от 0 до t 1 , умноженным на масштабный коэффициент 1/RC. Напряжение V ic - это напряжение на конденсаторе в начальный момент времени (t = 0).

5.2.4. Дифференциаторы

Дифференциатор вырабатывает выходной сигнал, пропорциональный скорости изменения во времени входного сигнала. На рис. 5.10 показана принципиальная схема простого дифференциатора.



Ток через конденсатор .

Если производная положительна, ток i i течет в таком направлении, что формируется отрицательное выходное напряжение V 0.

Таким образом,

Этот метод дифференцирования сигнала кажется простым, но при его практической реализации возникают проблемы с обеспечением устойчивости схемы на высоких частотах. Не всякий ОУ пригоден для использования в дифференциаторе. Критерием выбора является быстродействие ОУ: нужно выбирать ОУ с высокой максимальной скоростью нарастания выходного напряжения и высоким значением произведения коэффициента усиления на ширину полосы. Хорошо работают в дифференциаторах быстродействующие ОУ на полевых транзисторах.

5.2.5. Компараторы

Компаратор – это электронная схема, которая сравнивает два входных напряжения и вырабатывает выходной сигнал, зависящий от состояния входов. Базовая принципиальная схема компаратора показана на рис. 5.11.


Как видим, здесь ОУ работает с разомкнутой петлей обратной связи. На один из его входов подается опорное напряжение, на другой – неизвестное (сравниваемое) напряжение. Выходной сигнал компаратора указывает: выше или ниже уровня опорного напряжения находится уровень неизвестного входного сигнала. В схеме на рис.5.11 опорное напряжение V r подается на неинвертирующий вход, а на инвертирующий вход поступает неизвестный сигнал V i .

При V i > V r на выходе компаратора устанавливается напряжение V 0 = - V r (отрицательное напряжение насыщения). В противоположном случае получаем V 0 = +V r .Можно поменять местами входы – это приведет к инверсии выходного сигнала.

5.3. Коммутация измерительных сигналов

В информационно-измерительной технике при реализации аналоговых измерительных преобразований часто приходится осуществлять электрические соединения между двумя и более точками измерительной схемы с целью вызвать необходимый переходный процесс, рассеять запасенную реактивным элементом энергию (например, разрядить конденсатор), подключить источник питания измерительной цепи, включить ячейку аналоговой памяти, взять выборку непрерывного процесса при дискретизации и т. д. Кроме того, многие измерительные средства осуществляют измерительные преобразования последовательно над большим числом электрических величин, распределенных в пространстве. Для реализации сказанного используются измерительные коммутаторы и измерительные ключи.

Измерительным коммутатором называется устройство, которое преобразует пространственно разнесенные аналоговые сигналы в сигналы, разделенные во времени, и наоборот.

Измерительные коммутаторы аналоговых сигналов характеризуются следующими параметрами:

динамическим диапазоном коммутируемых величин;

погрешностью коэффициента передачи;

быстродействием (частотой переключении или временем, необходимым для выполнения одной коммутационной операции);

числом коммутируемых сигналов;

предельным числом переключений (для коммутаторов с контактными измерительными ключами).

В зависимости от типа используемых в коммутаторе измерительных ключей различаются контактные и бесконтактные коммутаторы .

Измерительный ключ представляет собой двухполюсник с явно выраженной нелинейностью вольт-амперной характеристики. Переход ключа из одного состояния (закрытого) в другое (открытое) выполняется с помощью управляющего элемента.

5.4. Аналого-цифровое преобразование

Аналого-цифровое преобразование составляет неотъемлемую часть измерительной процедуры. В показывающих приборах эта операция соответствует считыванию числового результата экспериментатором. В цифровых и процессорных измерительных средствах аналого-цифровое преобразование выполняется автоматически, а результат либо поступает непосредственно на индикацию, либо вводится в процессор для выполнения последующих измерительных преобразований в числовой форме.

Методы аналого-цифрового преобразования в измерениях разработаны глубоко и основательно и сводятся к представлению мгновенных значений входного воздействия в фиксированные моменты времени соответствующей кодовой комбинацией (числом). Физическую основу аналого-цифрового преобразования составляет стробирование и сравнение с фиксированными опорными уровнями. Наибольшее распространение получили АЦП поразрядного кодирования, последовательного счета, следящего уравновешивания и некоторые другие. К вопросам методологии аналого-цифрового преобразования, которые связаны с тенденциями развития АЦП и цифровых измерений на ближайшие годы относятся, в частности:

Устранение неоднозначности считывания в наиболее быстродействующих АЦП сопоставления, получающих все большее распространение с развитием интегральной технологии;

Достижение устойчивости к сбоям и улучшение метрологических характеристик АЦП на основе избыточной системы счисления Фибоначчи;

Применение для аналого-цифрового преобразования метода статистических испытаний.

5.4.1 Цифроаналоговые и аналого-цифровые преобразователи

Цифроаналоговые (ЦАП) и аналого-цифровые преобразователи (АЦП) являются неотъемлемой частью автоматических систем контроля управления и регулирования. Кроме того, поскольку по­давляющее большинство измеряемых физических величин являются аналоговыми, а их обработка индикация и регистрация, как правило, осуществляются цифровыми методами, ЦАП и АЦП нашли широкое применение в автоматических средствах измерений. Так, ЦАП и АЦП входят в состав цифровых измерительных приборов (вольтметров, осциллографов, анализаторов спектра, корреляторов и т. п.), программируемых источников питания, дисплеев на электроннолучевых трубках, графопостроителей, радиолокационных систем установок для контроля элементов и микросхем, являются важными компонентами различных преобразователей и генераторов, устройств ввода вывода информации ЭВМ. Широкие перспективы применения ЦАП и АЦП открываются в телеметрии и телевидении. Серийный выпуск малогабаритных и относительно дешевых ЦАП и АЦП даст возможность еще более широкого использования методов дискретно непрерывного преобразования в науке и технике.

Существует три разновидности конструктивно технологического исполнения ЦАП и АЦП: модульное, гибридное и интегральное. При этом доля производства интегральных схем (ИС) ЦАП и АЦП в общем объеме их выпуска непрерывно возрастает, чему в значительной степени способствует широкое распространение микропроцессоров и методов цифровой обработки данных. ЦАП - устройство, которое создает на выходе аналоговый сигнал (напряжение или ток), пропорциональный входному цифровому сигналу. При этом значение выходного сигнала зависит от значения опорного напряжения U оп, определяющего полную шкалу выходного сигнала. Если в качестве опорного напряжения использовать какой либо аналоговый сигнал, то выходной сигнал ЦАП будет пропорционален произведению входных цифрового и анало­гового сигналов.В АЦП цифровой код на выходе определяется отношением пpeобразуемого входного аналогового сигналa к опорному сигналy, соответствующему полной шкале. Это соотношение выполняется и в том случае, если опорный сигнал изменяется по какому-либо за­кону. АЦП можно рассматривать как измеритель отношений или делитель напряжений с цифровым выходом.

5.4.2. Принципы действия, основные элементы и структурные схемы АЦП

В настоящее время разработано большое количество типов АЦП, удовлетворяющее разнообразным требованиям. В одних случаях преобладающим требованием является высокая точность, в других - скорость преобразования.

По принципу действия все существующие типы АЦП можно разделить на две группы: АЦП со сравнением входного преобразуемого сигнала с дискретными уровнями напряжений и АЦП интегрирующего типа.

В АЦП со сравнением входного преобразуемого сигнала с дискретными уровнями напряжений используется процесс преобразования, сущность которого заключается в формировании напряжения с уровнями, эквивалентными соответствующим цифровым кодам, и сравнении этих уровней напряжения с входным напряжением с целью определения цифрового эквивалента входного сигнала. При этом уровни напряжения могут формироваться одновременно, последовательно или комбинированным способом.

АЦП последовательного счета со ступенчатым пилообразным напряжением является одним из простейших преобразователей (рис. 5.12).



По сигналу "Пуск" счетчик устанавливается в нулевое состояние, после чего по мере поступления на его вход тактовых импульсов с частотой f т линейно-ступенчато возрастает выходное напряжение ЦАП.

При достижении напряжением U вых значения U вх схема сравнения прекращает подсчет импульсов в счетчике Сч, а код с выходов последнего заносится в регистр памяти. Разрядность и разрешающая способность таких АЦП определяется разрядностью и разрешающей способностью используемого в его составе ЦАП. Время преобразования зависит от уровня входного преобразуемого на-пряжения. Для входного напряжения, соответствующего значению полной шка-лы, Сч должен быть заполнен и при этом он должен сформировать на входе ЦАП код полной шкалы. Это требует для n- разрядного ЦАП времени преобразования в (2 n - 1) раз больше периода тактовых импульсов. Для быстрого аналого-цифрового преобразования использование подобных АЦП нецелесообразно.

В следящем АЦП (рис. 5.13) суммирующий Сч заменен на реверсивный счетчик РСч, чтобы отслеживать изменяющееся входное напряжение. Выходной сигнал КН определяет направление счета в зависимости от того превышает или нет входное напряжение АЦП выходное напряжение ЦАП.


Перед началом измерений РСч устанавливается в состояние, соответствующее середине шкалы (01 ... 1). Первый цикл преобразования следящего АЦП аналогичен циклу преобразования в АЦП последовательного счета. В дальнейшем циклы преобразования существенно сокращаются, так как данный АЦП успевает отследить малые отклонения входного сигнала за несколько тактовых периодов, увеличивая или уменьшая число импульсов, записанное в РСч, в зависимости от знака рассогласования текущего значения преобразуемого напряжения U вх и выходного напряжения ЦАП.

АЦП последовательного приближения (поразрядного уравновешивания) нашли наиболее широкое распространение в силу достаточно простой их реализации при одновременном обеспечении высокой разрешающей способ-ности, точности и быстродействия, имеют несколько меньшее быстродействие, но существенно большую разрешающую способность в сравнении с АЦП, реализующими метод параллельного преобразования.



Для повышения быстродействия в качестве управляющего устройства используется распределитель импульсов РИ и регистр последовательного приближения. Сравнение входного напряжения с опорным (напряжением обратной связи ЦАП) ведется, начиная с величины, соответствующей старшему разряду формируемого двоичного кода.

При пуске АЦП с помощью РИ устанавливается в исходное состояние РПП:

1000 . . .0. При этом на выходе ЦАП формируется напряжение, соответствующее половине диапазона преобразования, что обеспечивается включением его старшего разряда. Если входной сигнал меньше, чем сигнал от ЦАП, в следующем такте с помощью РПП на цифровых входах ЦАП формируется код 0100. . . 0, что соответствует включению 2-го по старшинству разряда. В результате выходной сигнал ЦАП уменьшается вдвое.

Если входной сигнал превышает сигнал от ЦАП, в очередном такте обеспечивается формирование кода 0110 ... 0 на цифровых входах ЦАП и включение дополнительного 3-го разряда. При этом выходное напряжение ЦАП, возросшее в полтора раза, вновь сравнивается с входным напряжением и т. д. Описанная процедура повторяется n раз (где n - число разрядов АЦП).

В результате на выходе ЦАП сформируется напряжение, отличающееся от входного не более, чем на единицу младшего разряда ЦАП. Результат преобразования снимается с выхода РПП.

Достоинством данной схемы является возможность построения многоразрядных (до 12 разрядов и выше) преобразователей сравнительно высокого быстродействия (с временем преобразования порядка несколько сот наносекунд).

В АЦП непосредственного считывания(параллельного типа) (рис. 5.15) входной сигнал одновременно прикладывается ко входам всех КН, число m которых определяется разрядностью АЦП и равно m = 2 n - 1, где n - число разрядов АЦП. В каждом КН сигнал сравнивается с опорным напряжением, соответствующем весу определенного разряда и снимаемым с узлов резисторного делителя, питаемого от ИОН.



Выходные сигналы КН обрабатываются логическим дешифратором, вырабатывающим параллельный код, являющийся цифровым эквивалентом входного напряжения. Подобные АЦП обладают самым высоким быстродействием. Недостаток таких АЦП заключается в том, что с ростом разрядности количество требуемых элементов практически удваивается, что затрудняет построение многоразрядных АЦП подобного типа. Точность преобразования ограничивается точностью и стабильностью КН и резисторного делителя. Чтобы увеличить разрядность при высоком быстродействии реализуют двухкаскадные АЦП, при этом с выходов второй ступени ДШ снимаются младшие разряды выходного кода, а с выходов ДШ первой ступени - старшие разряды.

АЦП с модуляцией длительности импульса (однотактный интегрирующий)

АЦП характеризуется тем, что уровень входного аналогового сигнала U вх преобразуется в импульс, длительность которого t имп является функцией значения входного сигнала и преобразуется в цифровую форму с помощью подсчета числа периодов опорной частоты, которые укладываются между началом и концом импульса. Выходное напряжение интегратора под действием подклю-


ченного к его входу U оп изменяется от нулевого уровня со скоростью

В момент, когда выходное напряжение интегратора становится равным входному U вх, КН срабатывает, в результате чего заканчивается формирование длительности импульса, в течение которого в счетчиках АЦП происходит подсчет числа периодов опорной частоты. Длительность импульса определяется временем, за которое напряжение U вых изменяется от нулевого уровня до U вх:

Достоинство данного преобразователя заключается в его простоте, а недостатки - в относительно низком быстродействии и низкой точности.

ЛЕКЦИЯ 16.
Параметрические измерительные преобразователи

Термометры сопротивления .

Термометры сопротивления как и термопары, предназначены для измерения температуры газообразных, твердых и жидких тел, а также температуры поверхности. Принцип действия термометров основан на использовании свойства металлов и полупроводников изменять свое электрическое сопротивление с температурой. Для проводников из чистых металлов эта зависимость в области температур от –200 о С до 0 о С имеет вид:

R t = R 0 ,

а в области температур от 0 о С до 630 о С

R t = R 0 }