Операторы проектирования. Линейные операторы в евклидовом пространстве Линейный оператор проектирования на плоскость

Бра- и кет- векторы Дирака замечательны тем, что с помощью них можно записать различные типы произведений.

Произведение бра-вектора на кет- вектор называется скалярным произведением или внутренним произведением. По сути это стандартное матричное произведение по правилу «строка на столбец». Результатом его есть комплексное число.

Произведение кет-вектора на другой кет-вектор дает уже не число, а другой кет-вектор. Он тоже представляется вектор-столбцом, но с количеством компонент равном произведению размерностей исходных векторов. Такое произведение называется тензорным произведением или произведением Кронекера.

Аналогично и для произведения двух бра-векторов. Получим большую вектор-строку.

Последним остается вариант с перемножением кет-вектора на бра-вектор. То есть необходимо перемножить столбец на строку. Такое произведение также называется тензорным или внешним произведением. В его результате получается матрица, то есть оператор.

Рассмотрим пример использования таких операторов.

Возьмем какой-нибудь произвольный эрмитов оператор А. Согласно постулатам ему соответствует какая-то наблюдаемая величина. Собственные векторы эрмитового оператора формируют базис. Наиболее общий вектор состояния можно разложить по этому базису. То есть представить суммой базисных векторов с определенными комплексными коэффициентами. Данный факт известен как принцип суперпозиции. Перепишем выражение через знак суммы.

Но коэффициенты в разложении вектора по базисным есть амплитуды вероятности, то есть скалярное произведение вектора состояния с соответствующим базисным вектором. Запишем эту амплитуду справа от вектора. Выражение под знаком суммы можно рассматривать как умножение кет-вектора на комплексное число – амплитуду вероятности. С другой стороны его можно рассматривать как произведение матрицы, полученной умножением кет-вектора на бра-вектор, и исходного кет-вектора. Кет-вектор можно вынести из под знака суммы за скобку. Справа и слева знака равенства окажется один и тот же вектор пси. Это значит, что вся сумма ничего не делает с вектором и соответственно равна единичной матрице.

Данная формула сама по себе очень полезна при манипулировании выражениями с произведениями бра- и кет- векторов. Ведь единицу можно вставить в любое место произведения.

Посмотрим что же из себя представляют матрицы, входящие в сумму и получаемые тензорным произведением базисного кет-вектора со своим эрмитовым сопряжением. Опять же для наглядности проведем аналогию с обычными векторами в трехмерном пространстве.

Выберем единичные базисные векторы ex ey и ez, совпадающие по направлению с осями координат. Тензорное произведение вектора ex на свое сопряжение будет представляться следующей матрицей. Возьмем произвольный вектор v. Что же будет при умножении этой матрицы на вектор? Данная матрица просто обнулила все компоненты вектора кроме х. В итоге получился вектор, направленный вдоль оси х, то есть проекция исходного вектора на базисный вектор ex. Выходит наша матрица есть не что иное как оператор проекции.

Оставшиеся два оператора проекции на базисные векторы ey и ez представляются похожими матрицами и выполняют аналогичную функцию – обнуляют все кроме одной компоненты вектора.

Что же получится при суммировании операторов проекции? Сложим например операторы Px и Py. Такая матрица будет обнулять только z-компоненту вектора. Итоговый вектор всегда будет лежать в плоскости x-y. То есть мы имеем оператор проекции на плоскость x-y.

Теперь понятно почему сумма всех операторов проекции на базисные векторы равна единичной матрице. В нашем примере мы получим проекцию трехмерного вектора на само трехмерное пространство. Единичная матрица по-сути и есть проектор вектора самого на себя.

Получается задание оператора проекции эквивалентно заданию подпространства исходного пространства. В рассматриваемом случае трехмерного евклидового пространства это может быть одномерная линия, задаваемая одним вектором или двумерная плоскость, задаваемая парой векторов.

Возвращаясь к квантовой механике с ее векторами состояния в Гильбертовом пространстве, можно сказать что операторы проекции задают подпространство и проецируют вектор состояния в это Гильбертово подпространство.

Приведем основные свойства операторов проекции.

  1. Последовательное применение одного и того же оператора проекции эквивалентно одному оператору проекции. Обычно данное свойство записывают как P 2 =P. Действительно, если первый оператор спроецировал вектор в подпространство, то второй уже ничего с ним не сделает. Вектор ведь уже будет находиться в этом подпространстве.
  2. Операторы проекции являются эрмитовыми операторами, соответственно в квантовой механике им соответствуют наблюдаемые величины.
  3. Собственные значения операторов проекции любой размерности это только числа единица и ноль. Находится вектор в подпространстве или не находится. Из-за такой бинарности, описываемую оператором проекции наблюдаемою величину можно сформулировать в виде вопроса, ответом на который будет «да» или «нет». Например, направлен ли спин первого электрона в синглетном состоянии вверх по оси z? Такому вопросу можно поставить в соответствие оператор проекции. Квантовая механика позволяет посчитать вероятности для ответа «да» и для ответа «нет».

В дальнейшем мы еще будем говорить об операторах проекции.

Матрица линейного оператора

Пусть - линейный оператор, причем пространства и конечномерные, и .

Зададим произвольно базисы: в и в .

Поставим задачу: для произвольного вектора вычислить координаты вектора в базисе .

Вводя векторную матрицу-строку , состоящую из образов векторов базиса , получим:

Заметим, что последнее в этой цепочке равенство имеет место как раз в силу линейности оператора .

Разложим систему векторов по базису :

,

где - ый столбец матрицы есть столбец координат вектора в базисе .

Окончательно будем иметь:

Итак, для того, чтобы вычислить столбец координат вектора в выбранном базисе второго пространства, достаточно умножить столбец координат вектора в выбранном базисе первого пространства слева на матрицу, состоящую из столбцов координат образов базисных векторов первого пространства в базисе второго пространства.

Матрица называется матрицей линейного оператора в заданной паре базисов .

Матрицу линейного оператора условимся обозначать той же буквой, что и сам оператор, но без курсива . Иногда будем использовать и такое обозначение: , опуская зачастую ссылки на базисы (если это не вредит точности).

Для линейного преобразования (т.е., когда ) можно говорить о его матрице в данном базисе .

В качестве примера рассмотрим матрицу оператора проектирования из примера п. 1.7 (считая его преобразованием пространства геометрических векторов). В качестве базиса выберем обычный базис .

Следовательно, матрица оператора проектирования на плоскость в базисе имеет вид:

Заметим, что если бы мы рассматривали оператор проектирования как отображение в , понимая под последним пространство всех геометрических векторов, лежащих в плоскости , то, беря в качестве базиса базис , получим уже такую матрицу:

Рассматривая произвольную матрицу размера как линейный оператор, отображающий арифметическое пространство в арифметическое пространство , и выбирая в каждом из этих пространств канонический базис, получим, что матрица данного линейного оператора в такой паре базисов есть та самая матрица, которая определяет данный оператор - то есть, в данном случае матрица и линейный оператор есть одно и то же (точно так же, как при выборе канонического базиса в арифметическом векторном пространстве вектор и столбец его координат в данном базисе можно отождествить). Но было бы грубой ошибкой отождествлять вектор как таковой и линейный оператор как таковой с их представлением в том или ином базисе (в виде столбца или матрицы). И вектор, и линейный оператор суть геометрические, инвариантные объекты , определяемые независимо от какого-либо базиса . Так, когда мы, например, рисуем геометрический вектор как направленный отрезок, то он определен совершенно инвариантно, т.е. нам, когда мы его рисуем, нет никакого дела до базисов, систем координат и т. п., и мы можем им оперировать чисто геометрически. Другое дело, что для удобства этого оперирования, для удобства вычислений с векторами, мы строим определенный алгебраический аппарат, вводя системы координат, базисы и связанную с ними чисто алгебраическую технику вычислений над векторами. Образно говоря, вектор, как «голый» геометрический объект, «одевается» в различные координатные представления в зависимости от выбора базиса. Но человек может надеть на себя самое разнообразное платье, от чего его суть как человека не меняется, но верно и то, что не любое платье подходит к той или иной ситуации (на пляж не пойдешь в концертном фраке), да и голым тоже не везде пройдешься. Так и не любой базис годится для решения данной задачи, равно как и чисто геометрическое решение может оказаться слишком сложным. Мы увидим в нашем курсе, как для решения такой, казалось бы, чисто геометрической задачи, как классификация поверхностей второго порядка, строится довольно сложная и красивая алгебраическая теория.

Понимание отличия геометрического объекта от его представления в том или ином базисе составляет основу восприятия линейной алгебры. И геометрическим объектом вовсе не обязан быть именно геометрический вектор. Так, если мы зададим арифметический вектор , то его можно отождествить со столбцом его координат в каноническом базисе , ибо (см. первый семестр):

Но введем другой базис в , состоящий из векторов и (проверьте, что это действительно базис!) и, используя матрицу перехода , пересчитаем координаты нашего вектора:

Мы получили совсем другой столбец, но он представляет в другом базисе тот же самый арифметический вектор.

Сказанное о векторах приложимо и к линейным операторам. То, чем для вектора является его координатное представление, тем для линейного оператора является его матрица.

Итак (повторим еще раз), нужно четко разграничивать сами по себе инвариантные, геометрические, объекты, каковы вектор и линейный оператор, и их представление в том или ином базисе (речь, разумеется, идет о конечномерных линейных пространствах).

Займемся теперь как раз задачей преобразования матрицы линейного оператора при переходе от одной пары базисов к другой.

Пусть - новая пара базисов в исоответственно.

Тогда (обозначая матрицу оператора в паре «штрихованных» базисов) получим:

Но, с другой стороны,

,

откуда, в силу единственности разложения вектора по базису

,

Для линейного преобразования формула принимает более простой вид:

Матрицы и , связанные таким соотношением, называются подобными .

Легко видеть, что детерминанты подобных матриц совпадают.

Введем теперь понятие ранга линейного оператора .

По определению это число, равное размерности образа данного оператора:

Докажем следующее важное утверждение:

Утверждение 1. 10 Ранг линейного оператора совпадает с рангом его матрицы, независимо от выбора базисов.

Доказательство . Прежде всего, заметим, что образ линейного оператора есть линейная оболочка системы , где - базис в пространстве .

Действительно,

каковы бы ни были числа , но это и означает, что является указанной линейной оболочкой.

Размерность линейной оболочки, как мы знаем (см. п. 1.2) совпадает с рангом соответствующей системы векторов.

Мы ранее доказали (п. 1.3), что если система векторов разложена по некоторому базису в виде

то при условии независимости системы столбцы матрицы линейно независимы. Можно доказать и более сильное утверждение (это доказательство мы опускаем): ранг системы равен рангу матрицы , причем, этот результат не зависит от выбора базиса, так как умножение матрицы на невырожденную матрицу перехода не меняет ее ранга.

Поскольку

,

Так как, очевидно, ранги подобных матриц совпадают, то данный результат не зависит от выбора конкретного базиса.

Утверждение доказано.

Для линейного преобразования некоторого конечномерного линейного пространства мы можем ввести и понятие детерминанта данного преобразования как детерминанта его матрицы в произвольно фиксированном базисе, ибо матрицы линейного преобразования в различных базисах подобны и имеют, следовательно, одинаковые детерминанты.

Используя понятие матрицы линейного оператора, докажем следующее важное соотношение: для любого линейного преобразования -мерного линейного пространства

Выберем произвольно базис в пространстве . Тогда ядро состоит из тех и только тех векторов, столбцы координат которых суть решения однородной системы

а именно, вектор тогда и только тогда, когда столбец есть решение системы (1).

Другими словами, имеет место изоморфизм ядра на пространство решений системы (1). Следовательно, размерности этих пространств совпадают. Но размерность пространства решений системы (1) равна, как мы уже знаем, , где - ранг матрицы . Но мы только что доказали, что

Пусть линейный оператор А действует в евклидовом пространстве E n и преобразует это пространство само в себя.

Введем определение : оператор А * назовем сопряженным оператору А , если для любых двух векторов x,y из Е n выполняется равенство скалярный произведений вида:

(Ax,y ) = (x,A * y )

Еще определение : линейный оператор называется самосопряженным, если он равен своему сопряженному оператору, т. е. справедливо равенство:

(Ax,y ) = (x,Ay )

или, в частности (Ax,x ) = (x,Ax ).

Самосопряженный оператор обладает некоторыми свойствами. Упомянем некоторые из них:

    Собственные числа самосопряженного оператора - вещественны (без доказательства);

    Собственные векторы самосопряженного оператора ортогональны. Действительно, если x 1 и x 2 – собственные векторы, а  1 и  2 – их собственные числа, то: Ax 1 =  1 x ; Ax 2 =  2 x ; (Ax 1 ,x 2 ) = (x 1 ,Ax 2 ), или  1 (x 1 ,x 2 ) =  2 (x 1 ,x 2 ). Поскольку  1 и  2 различны, то отсюда (x 1 ,x 2 ) = 0, что и требовалось доказать.

    В евклидовом пространстве существует ортонормированный базис из собственных векторов самосопряженного оператора А . Т. е. матрицу самосопряженного оператора всегда можно привести к диагональному виду в некотором ортонормированном базисе, составленном из собственных векторов самосопряженного оператора.

Еще одно определение : назовем самосопряженный оператор, действующий в евклидовом пространстве симметричным оператором. Рассмотрим матрицу симметричного оператора. Докажем утверждение: чтобы оператор был симметричным, необходимо и достаточно, чтобы в ортонормированном базисе его матрица была бы симметричной.

Пусть А – симметричный оператор, т. е.:

(Ax,y ) = (x,Ay )

Если А – матрица оператора А, а x и y – некоторые векторы, то запишем:

координаты x и y в некотором ортонормированном базисе

Тогда: (x,y ) = X T Y = Y T X и имеем (Ax,y ) = (AX) T Y = X T A T Y

(x,Ay ) = X T (AY) = X T AY,

т.е. X T A T Y = X T AY. При произвольных матрицах-столбцах X,Y это равенство возможно только при А Т = А, а это означает, что матрица А – симметричная.

Рассмотрим некоторые примеры линейных операторов

Оператор проектирования. Пусть требуется найти матрицу линейного оператора, осуществляющего проектирование трехмерного пространства на координатную ось е 1 в базисе е 1 , е 2 , е 3 . Матрица линейного оператора – это матрица, в столбцах которой должны стоять образы базисных векторов е 1 = (1,0,0), е 2 = (0,1,0), е 3 = (0,0,1). Эти образы, очевидно, есть: Ае 1 = (1,0,0)

Ае 2 = (0,0,0)

Ае 3 = (0,0,0)

Следовательно, в базисе е 1 , е 2 , е 3 матрица искомого линейного оператора будет иметь вид:

Найдем ядро этого оператора. Согласно определению ядро – это множество векторов х , для которых АХ = 0. Или


Т. е. ядро оператора составляет множество векторов, лежащих в плоскости е 1 , е 2 . Размерность ядра равна n – rangA = 2.

Множество образов этого оператора – это, очевидно, множество векторов, коллинеарных е 1 . Размерность пространства образов равна рангу линейного оператора и равна 1 , что меньше размерности пространства прообразов. Т. е. оператор А – вырожденный. Матрица А тоже вырождена.

Еще пример : найти матрицу линейного оператора, осуществляющего в пространстве V 3 (базис i , j , k ) линейное преобразование – симметрию относительно начала координат.

Имеем: Ai = -i

Т. е. искомая матрица

Рассмотрим линейное преобразование – симметрию относительно плоскости y = x .

Aj = i (1,0,0)

Ak = k (0,0,1)

Матрица оператора будет:

Еще пример – уже знакомая матрица, связывающая координаты вектора при повороте осей координат. Назовем оператор, осуществляющий поворот осей координат, - оператор поворота. Допустим, осуществляется поворот на угол :

Ai ’ = cosi + sinj

Aj ’ = -sini + cosj

Матрица оператора поворота:

Ai Aj

Вспомним формулы преобразования координат точки при смене базиса – замена координат на плоскости при смене базиса:

Эти формулы можно рассматривать двояко. Ранее мы рассматривали эти формулы так, что точка стоит на месте, поворачивается координатная система. Но можно рассматривать и так, что координатная система остается прежней, а перемещается точка из положения М * в положение М. Координаты точки М и М* определены в той же координатной системе.

Все сказанное позволяет подойти к следующей задаче, которую приходится решать программистам, занимающимся графикой на ЭВМ. Пусть необходимо на экране ЭВМ осуществить поворот некоторой плоской фигуры (например треугольника) относительно точки О’ с координатами (a,b) на некоторый угол . Поворот координат описывается формулами:

Параллельный перенос обеспечивает соотношения:

Для того, чтобы решить такую задачу, обычно применяют искусственный прием: вводят так зазываемые “однородные” координаты точки на плоскости XOY: (x, y, 1). Тогда матрица, осуществляющая параллельный перенос, может быть записана:

Действительно:

А матрица поворота:

Рассматриваемая задача может быть решена в три шага:

1 й шаг: параллельный перенос на вектор А(-а, -b) для совмещения центра поворота с началом координат:

2 й шаг: поворот на угол :

3 й шаг: параллельный перенос на вектор А(а, b) для возвращения центра поворота в прежнее положение:

Искомое линейное преобразование в матричном виде будет выглядеть:

(**)

  • Разделы сайта